• 제목/요약/키워드: Silicon mirror

검색결과 87건 처리시간 0.024초

실리콘 파브리-페로 파장가변 열광학 필터 (Silicon Fabry-Perot Tunable Thermo-Optic Filter)

  • 박수연;강동헌;김영호;길상근
    • 전기전자학회논문지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2008
  • 실리콘 박막 코팅을 이용한 WDM용 파장가변 실리콘 파브리-페로 열광학 필터를 제안하고 실험하였다. 실리콘 파브리-페로 파장가변 필터는 일반적인 실리콘 웨이퍼를 CMP 공정을 통해 100${\mu}m{\pm}$1%의 두께로 가공하여 양면에 거울면을 갖도록 박막 코팅하고 온도를 변화시키기 위해 PTC 써미스터를 부착하여 제작하였다. 거울면의 형성은 1550nm를 중심 파장을 갖도록 양면에 굴절율이 다른 물질 $SiO_2$($n_{low}$=1.44)와 a-Si($n_{high}$=3.48)을 ${\lambda}$/4의 두께로 증착시켜 2층 박막과 3층 박막의 거울면을 제작하였다. 실험결과, 2층 박막의 경우 FSR이 3.61nm, FWHM이 0.56nm, finesse가 6.4로 나타났고, 3층 박막의 경우 FSR이 3.36nm, FWHM이 0.13nm, finesse가 25.5로 나타났다. 열광학 효과에 의한 파장 이동은 2층 박막 거울을 가진 필터의 경우 온도가 $23^{\circ}C$에서 투과 중심 파장이 1549.73nm $30^{\circ}C$에서 1550.91nm, $60^{\circ}C$에서 1553.46nm로 파장 이동을 하였고, 3층 박막 거울을 가진 필터의 경우는 온도가 $23^{\circ}C$에서 투과 중심 파장이 1549.83nm, $30^{\circ}C$에서 1550.92nm, $60^{\circ}C$에서 1553.07nm로 파장 이동을 하였다.

  • PDF

전극 홈 형상에 따른 스캐닝 미러의 구동 특성 (Driving Characteristics of the Scanning Mirrors to the Different width and Number of the Grooves on the Electrodes)

  • 박근우;김용권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권11호
    • /
    • pp.575-580
    • /
    • 2001
  • In this paper, using $500\mum-thickness\; (100)\; silicon\; wafer,\; flat\; 65\mum-thickness$ silicon mirror plates were fabricated through dry etching and wet etching, and $45\mum-depth$ grooved driving electrodes were fabricated through UV-LIGA process. Four shapes of the driving electrode were fabricated: twenty four grooves of the $50\mum-width$, twelve grooves of the $100\mum-width$, six grooves of the $200\mum-width$, and no grooves on the driving electrode. Fabricated mirror plate size and spring size are $2400\times2400\times65\mum3\; and \;500\times10\times65\mum3,$ respectively. Mirror plate parts and driving electrodes were assembled into the scanning mirrors. Measured natural resonance frequencies were about 600Hz which have error within $\pm 2%$ to calculated value. Due to the squeeze effect in the narrow gap between the mirror plate and the driving electrode, measured resonance frequencies were reduced as raising the amplitude of the mirror plate. In a case of driving electrode without grooves, the resonance frequency was reduced largely, compared with a case of driving electrode with grooves. According to the experimental results, squeeze effect was smaller in the driving electrode with smaller-width and many grooves. Therefore, the driving electrode with smaller-width and many grooves was effective in low voltage and high speed operation.

  • PDF

전자기력을 이용한 대변위 구동 2축 스캐닝 미러의 설계 (Design of a large deflection 2 DOF scanning mirror using an electromagnetic force)

  • 이경건;장윤호;유병욱;진주영;임용근;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.181-182
    • /
    • 2008
  • In this paper, we present the design of an electromagnetic scanning mirror with rotated serpentine springs. We considered three types of torsional springs: simple beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The analysis was done for an electrical resistance, differences in the mode-frequency, and resonances regarding to spring thickness. Electromagnetic coils under the mirror plate were also analyzed for power consumption and the mechanical deflection. From the analysis result, RSS and electromagnetic coils were designed for the silicon scanning mirror.

  • PDF

바이오칩 제작 장치용 단결정 실리콘 마이크로 미러 어레이의 설계와 제작 (Design and fabrication of a single crystalline silicon micromirror array for biochip fabrication systems)

  • 장윤호;이국녕;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.49-52
    • /
    • 2003
  • Single crystalline silicon (SCS) was adopted for a reliable micromirror array of biochip fabrication applications. SCS has excellent mechanical properties and smooth surface, which is the best material for micromirror devices. The mirror array has $16{\times}16$ micromirrors and each mirror has a $120{\mu}m{\times}100{\mu}m$ reflective surface. The micromirror has simple torsional beam springs and electrostatic force was used for driving. The designed tilting angle was $9.6^{\circ}$, and the tilting angles were measured according to applied voltages. The surface roughness was measured by a laser profiler. The response time was measured using He-Ne laser and position sensitive diode (PSD), and the lifetime was checked for reliability proof.

  • PDF

정보통신 소자 응용을 위한 단결정 실리콘 마이크로 미러 어레이 (Single crystalline silicon micyomirror array for data communication applications)

  • 장윤호;이국녕;김용권
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2003년도 하계학술대회
    • /
    • pp.93-95
    • /
    • 2003
  • We have designed and fabricated a micromirror array using single crystalline silicon (SCS) for data communication applications. The mirror array has $16{\times}16$ micromirrors and each mirror has $120{\mu}m{\times}100{\mu}m$ reflective surface. Electrostatic force was adopted as a driving mechanism. The spring dimensions were determined using relationship between spring dimensions and driving voltage. The designed tilting angle was $9.6^{\circ}$, and measured tilting angle according to applied voltages were experimented. The response time was measured using He-Ne laser and position sensitive diode (PSD), and lifetime was checked for reliability proof.

  • PDF

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • 제3권3호
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

대칭구동기를 갖는 가변 광 감쇄기의 제작 (VOA fabrication with symmetric actuator)

  • 김태엽;허재성;문성욱;신현준;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1912-1913
    • /
    • 2003
  • This paper presents a variable optical attenuator (VOA) that is fabricated using bosch deep silicon etching process [1] with silicon-on- insulator (SOI) wafer. The VOA consists of driving electrode, ground electrode, actuating mirror, and mechanical slower. In this VOA, actuating mirror is driven by electrostatic force [2] and the pull-in voltage is close to 13V, 28 V, 46V come along with the spring width of $3{\mu}m,\;5{\mu}m,\;7{\mu}m$ respectively.

  • PDF

INTERNATIONAL COLLABORATION FOR SILICON CARBIDE MIRROR POLISHING AND DEVELOPMENT

  • HAN, JEONG-YEOL;CHO, MYUNG;POCZULP, GARY;NAH, JAKYUNG;SEO, HYUN-JOO;KIM, KYUNG-HWAN;TAHK, KYUNG-MO;KIM, DONG-KYUN;KIM, JINHO;SEO, MINHO;LEE, JONGGUN;HAN, SUNG-YEOP
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.687-690
    • /
    • 2015
  • For research and development of Silicon Carbide (SiC) mirrors, the Korea Astronomy and Space Science Institute (KASI) and National Optical Astronomy Observatory (NOAO) have agreed to cooperate and share on polishing and measuring facilities, experience and human resources for two years (2014-2015). The main goals of the SiC mirror polishing are to achieve optical surface figures of less than 20 nm rms and optical surface roughness of less than 2 nm rms. In addition, Green Optics Co., Ltd (GO) has been interested in the SiC polishing and joined the partnership with KASI. KASI will be involved in the development of the SiC polishing and the optical surface measurement using three different kinds of SiC materials and manufacturing processes (POCO$^{TM}$, CoorsTek$^{TM}$ and SSG$^{TM}$ corporations) provided by NOAO. GO will polish the SiC substrate within requirements. Additionally, the requirements of the optical surface imperfections are given as: less than 40 um scratch and 500 um dig. In this paper, we introduce the international collaboration and interim results for SiC mirror polishing and development.

단층 다결정 실리콘 마이크로머시닝 기술로 제작된 정전형 마이크로 미러 어레이의 모델링 및 측정 (Modeling and Measurement of Electrostatic Micro Mirror Array Fabricated with Single Layer Polysilicon Micromachining Technology)

  • 민영훈;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.612-614
    • /
    • 1997
  • Silicon based micro mirror array is a highly efficient component for use in optical applications such as adaptive optical systems and optical correlators. A micro mirror array designed, fabricated and tested here is consisted of $5{\times}5$ single layer polysilicon, electrostatically driven actuators. In this paper, deflection characteristics and pull-in behavior of the actuators for analog control was studied and particularly, the influence of the residual stress in flexure beams for the restorative force of actuators was considered. The springs are modeled as a residual stress-free spring and a spring with residual stress. In calculation, a mirror with the residual stress-free springs has 30.3N/m spring constant and 31.1V pull-in voltage. On the other hand, a mirror with the stressed springs has 23.6N/m and 27.4V respectively. The experimental result, which is 20.5N/m and 25.5V, shows that the stressed springs ore well modeled.

  • PDF

Preparation and Characterization of Porous Polymethylmethacrylate Film Showing Optical Reflectivity

  • Kim, Jihoon
    • 통합자연과학논문집
    • /
    • 제6권2호
    • /
    • pp.82-86
    • /
    • 2013
  • This paper describes a method for the preparation of porous polymethylmethacrylate showing optical reflectivity from the porous silicon template. A porous polymethylmethacrylate showing optical reflectivity was prepared by replicating porous silicon template which was obtained by applying a computer-generated periodic square current density and resulted in a mirror with high reflectivity in a specific narrow spectral region. A porous polymethylmethacrylate showing an excellent reflectivity was successfully obtained by dissolving the Porous silicon template from the porous polymethylmethacrylate composite film. A porous polymethylmethacrylate exhibited a sharp reflection resonance in the reflectivity spectrum. Surface image of the porous polymethylmethacrylate indicated that the surface of the porous polymethylmethacrylate film had a porous structure. These porous polymethylmethacrylate films in aqueous solutions were stable for several days without any degradation.