• Title/Summary/Keyword: Silicon carbon composite

Search Result 105, Processing Time 0.028 seconds

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Studies on the Mathematical Modelling of the Pulse-CVI for the Infiltration of Siliconcarbide from Methyltrichlorosilane (메틸삼염화규소로부터 탄화규소 침착의 Pulse-CVI에 대한 수치모사 연구)

  • Kim, In-Goo;Kim, Min-Ki;Chung, Gui-Yung
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2005
  • In this research, the mathematical modelling of the pulse-CVI (Chemical Vapor Infiltration) for the preparation of siliconcarbide/carbon composite. Each pulse consists with the gas injection time, the reaction time and the evacuation time. Effects of the reaction time and the evacuation time were studied. Additionally, the effects of the reactant concentration and the pressure were observed. The benefits of the pulse-CVI such as the uniform infiltration of siliconcarbide into the carbon preform and the short reaction time were certified.

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica (구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.459-464
    • /
    • 2016
  • In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

Chemical composition of SAW weld metal welded with metal cored composite wire (메탈코어드 콤포지트 와이어를 사용한 SAW 용접금속 성분변화)

  • Jeong, Dong-Hui;Bang, Guk-Su;Jeong, Hong-Cheol;Lee, Jong-Bong;Park, Cheol-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.310-312
    • /
    • 2007
  • Two metal cored composite wires were manufactured to satisfy AWS F7A4-EC-G specification. They were used to weld EH36 grade steels with three different fluxes. Variation of carbon, manganese, silicon, titanium, and boron contents which affect the weld metal strength in weld metal was investigated.

  • PDF

Mechanical Properties & Ablation Mechanism of SiC Coated Carbon/Carbon Composite by Pack-cementation Method

  • Kim, J.I.;Oh, I.S.;Joo, H.J.
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • The pack-cementation process is the method which is formed SiC coating layer to improve weak oxidation properties of CFRCs (carbon fiber-reinforced carbons). This method develops the anti-oxidation coating layer having no dimensional changes and good wetting properties. In this study to improve the oxidative resistance of the prepared 4D CFRCs, the surface of CFRCs is coated by SiC using pack cementation method. The mechanical properties of SiC-coated 4D CFRCs are measured by the 3-point bending test, and their ablation properties are investigated by the arc torch plasma test. From the results, it is found that both mechanical and ablation properties of SiC-coated 4D CFRCs are much better than bare CFRCs.

  • PDF

Preparation of Si-SiC Composites by Si-Infiltration (Si 침윤에 의한 Si-SiC 복합체 제조)

  • 김인술;장주민;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.750-756
    • /
    • 1992
  • Reaction bonded si-SiC composites were prepared by silicon infiltration technique at temperature of 1$600^{\circ}C$ for 30 minutes in vaccum atmosphere. The microstructure and mechanical properties of Si-SiC composites were investigated and characterized. UF-15 and SE-10 as SiC powders, phenolic resin and carbon black as carbon source, and metallic silicon powder as molten Si source were used as starting materials. New SiC crystallines nucleatd and grown by reaction of Si and C were detected by TEM and SEM-EDS. The bonding between new and original SiC was found to be strong. But the wetting of SiC by unreacted metallic Si and the rapid grain growth of new SiC decreased density and fracture toughness. Fracture toughness and modulus of rupture of Si-SiC composite were about 3.2 MPa.m1/2 and 480 MPa, respectively.

  • PDF

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

A Study on the Manufacturing of Screw Rotors for Air-Compressors Using RTM Process (Resin Transfer Molding을 이용한 공기 압축기용 스크류로터 제작에 관한 연구)

  • 서정도;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • Screw rotors are core parts of screw type air compressors, compressors in refrigerating machines and super chargers of automobiles etc. They are composed of a female and a male rotors which have complex section profiles and helically swept geometry. Screw type compressors have advantages of low noise, high efficiency, less needs in maintenance etc. Usually, machining process of screw rotors requires long machining time using CNC machine designed only for screw rotors, which increase the cost of production. In this work, the screw rotors for air-compressors were manufactured with fiber reinforced epoxy composite materials by resin transfer molding process. The mold for the RTM process was made of aluminum and silicon rubber and was designed for release of helical shape products. Composite screw rotors, manufactured by RTM process, have advantages of lightweight, less cost of production, good characteristics of vibration etc.

  • PDF