• Title/Summary/Keyword: Silicon Oxide Film

Search Result 402, Processing Time 0.026 seconds

Physical and Electrical Characteristics of Wet Oxidized LPCVD Silicon Nitride Films (습식 산화한 LPCVD Silicon Nitride층의 물리적, 전기적 특성)

  • Lee, Eun-Gu;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.662-668
    • /
    • 1994
  • The physical and electrical characteristics of sub-l0nm thick capacitor dielectrics formed by wet oxidation of silicon nitride(oxide/nitride composite) and by removing the top oxide of oxidized silicon nitride(0xynitride) are described. For the capacitors with an oxide/nitride composite layer, the capacitance decreases sharply, but the breakdown field increases with an increase in the wet oxidation time at $900^{\circ}C$. For the capacitors with oxynitride layers, the values of both the capacitance and the breakdown field increase with increasing wet oxidation time. The reduction of effective thickness and the improved quality of oxynitride film are responsible for the improved capacitance and increased breakdown fields, respectively. In addition, intrinsic TDDB characteristics and early breakdown failure rate of oxynitride film are improved with increasing oxidation time. Consequently, the oxynitride film is suitable for dynamic memories as a thin dielectric film.

  • PDF

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

Present Status and Prospects of Thin Film Silicon Solar Cells

  • Iftiquar, Sk Md;Park, Jinjoo;Shin, Jonghoon;Jung, Junhee;Bong, Sungjae;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Extensive investigation on silicon based thin film reveals a wide range of film characteristics, from low optical gap to high optical gap, from amorphous to micro-crystalline silicon etc. Fabrication of single junction, tandem and triple junction solar cell with suitable materials, indicate that fabrication of solar cell of a relatively moderate efficiency is possible with a better light induced stability. Due to these investigations, various competing materials like wide band gap silicon carbide and silicon oxide, low band gap micro-crystalline silicon and silicon germanium etc were also prepared and applied to the solar cells. Such a multi-junction solar cell can be a technologically promising photo-voltaic device, as the external quantum efficiency of such a cell covers a wider spectral range.

Solution-Processed Zinc-Tin Oxide Thin-Film Transistors for Integrated Circuits

  • Kim, Kwang-Ho;Park, Sung-Kyu;Kim, Yong-Hoon;Kim, Hyun-Soo;Oh, Min-Suk;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.534-536
    • /
    • 2009
  • We have fabricated solution-processed zinc-tin oxide thin film transistors (TFTs) and simple circuits on glass substrates. We report a solutionprocessed zinc-tin oxide TFTs on silicon wafer with mobility greater than 9 $cm^2/V{\cdot}s$ (W/L = 100/5 ${\mu}m$) and threshold voltage variation of less than 1 V after bias-stressing. Also, we fabricated solution-processed zinc-tin oxide circuits including inverters and 7-stage ring oscillators fabricated on glass substrates using the developed zinc-tin oxide TFTs.

  • PDF

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Effect of Magnesium Oxide on the Nitridation of Silicon Compact. (규소의 질화반응에 있어 산화마그네시움의 효과)

  • 박금철;최상원
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

A Study on the Direct Bonding Method using the E-Beam Evaporated Silicon dioxide Film (전자선 증착된 실리콘 산화막층을 이용한 직접 접합에 관한 연구)

  • Park, Heung-Woo;Ju, Byeong-Kwon;Lee, Yun-Hi;Jeong, Seong-Jae;Lee, Nam-Yang;Koh, Ken-Ha;Haskard, M.R.;Park, Jung-Ho;Oh, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1988-1990
    • /
    • 1996
  • In this work, we have grown or evaporated thermal oxide and E-beam oxide on the (100) oriented n-type silicon wafers, respectively and they were directly bonded with another silicon wafer after hydrophilization using solutions of three types of $HNO_3$, $H_{2}SO_{4}$ and $NH_{4}OH$. Changes of average surface roughness after hydrophilizations of the single crystalline silicon wafer, thermal oxide and E-beam evaporated silicon oxide were studied using atomic force microscope. Bonding interfaces of the bonded pairs were inspected using scanning electron microscope. Void and non-contact area of the bonded pairs were also inspected using infrared transmission microscope.

  • PDF

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.