• 제목/요약/키워드: Silicon Machining

검색결과 145건 처리시간 0.026초

Electrically Conductive Silicon Carbide without Oxide Sintering Additives

  • Frajkorova, Frantiska;Lences, Zoltan;Sajgalik, Pavol
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.342-346
    • /
    • 2012
  • This work deals with the preparation of dense SiC based ceramics with high electrical conductivity without oxide sintering additives. SiC samples with different content of conductive Ti-NbC phase were hot pressed at $1850^{\circ}C$ for 1 h in Ar atmosphere under mechanical pressure of 30 MPa. The conductive phase is a mixture of Ti-NbC in weight ratio of Ti/NbC 1:4. Composite with 50% of conductive Ti-NbC phase showed the highest electrical conductivity of $30.6{\times}10^3\;S{\cdot}m^{-1}$, while the good mechanical properties of SiC matrix were preserved (fracture toughness 4.5 $MPa{\cdot}m^{1/2}$ and Vickers hardness 18.7 GPa). The obtained results show that use of NbC and Ti as sintering and also electrically conductive additives is appropriate for the preparation of SiC-based composite with sufficient electrical conductivity for electric discharge machining.

마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형 (Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding)

  • 문수동;안수호;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

유리 마이크로 광부품 어레이의 성형 (Molding of glass micro optical components)

  • 최우재;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.76-79
    • /
    • 2003
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make tungsten carbide core for glass molded micro optics way. We have developed novel method to fabricate tungsten carbide core for glass molding of glass micro optical components. Silicon masters were fabricated by micro machining. Tungsten Carbide cores were fabricated by forming, sintering and coating. Finally we fabricated glass molded V-groove with pitch of 192$\mu\textrm{m}$ and glass microlens way with lens diameter of 36∼225$\mu\textrm{m}$ by the present method.

  • PDF

나노 가공을 위한 힘.변위 검출시스템 개발 (Development of Force/Displacement Sensing System for Nanomachining)

  • 방진혁;권기환;박재준;조남규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.777-781
    • /
    • 2004
  • This paper presents a force/displacement sensing system to measure penetration depths and machining forces during pattering operation. This sensing system consists of a leaf spring mechanism and a capacitive sensor, which is mounted on a PZT driven in-feed motion stage with 1nm resolution. The sample is moved by a xy scanning motion stage with 5nm resolution. The constructed system was applied to nano indentation experiments, and the load-displacement curves of silicon(111) and aluminum were obtained. Then, the indentation samples were measured by AFM. Experimental results demonstrated that the developed system has the ability of preforming force/depth sensing indentations

  • PDF

잔류응력을 고려한 미세구조물의 강도해석 (Stress Analysis of the Micro-structure Considering the Residual Stress)

  • 심재준;한근조;안성찬;한동섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.820-823
    • /
    • 2002
  • MEMS structures Generally have been fabricated using surface-machining, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to difference of linear coefficient of thermal expansion. Therefore this paper studied the effect of the residual stress caused by variable external loads. This study did not analyzed accurate quantity of the residual stress but trend for the effect of residual stress. Several specimens were fabricated using other material(Al, Au and Cu) and thermal load was applied. The residual stress was measured by nano-indentation using AFM. The results showed the existence of the residual stress due to thermal load. The indentation area of the thermal loaded thin film reduced about 3.5% comparing with the virgin thin film caused by residual stress. The finite element analysis results are similar to indentation test.

  • PDF

웨이퍼 연삭 가공 기술의 동향 및 가공 정밀도 향상에 관한 연구 (The Trend of wafer Grinding Technology and Improvement of Machining Accuracy)

  • 안대균;황징연;이재석;이용한;하상백;이상직
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2002
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the quality of wafer such as flatness, roughness and so on. This paper describes the effect of grinding process on the surface quality of wafer. The experiments are carried out by high precision in fred grinder with air bearing spindle. The relationship between the inclination of chuck table and the flatness of wafer is investigated, and the effect of grinding conditions including wheel speed, table speed, and feed rate on damage depth and roughness of wafer is also investigated. The experimental results show that there is close relationship between the inclination of the chuck table and the flatness of wafer, and the grinding conditions within this paper little affect the flatness of wafer and relatively high affect the damage depth of wafer.

  • PDF

자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용 (Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication)

  • 성인하;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

레이저 예열에 의한 $Si_3N_4$ 세라믹스의 선삭가공 (Turning of Si3N4 ceramics preheated by Laser)

  • 김선원;이제훈;서정;신동식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1493-1498
    • /
    • 2007
  • Silicon Nitride ($Si_3N_4$), which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C$), however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to preheat the surface of a rothting $Si_3N_4$ rod. Preheating and turning of $Si_3N_4$ was executed at the same time. The result of machining was MRR of $8.0mm^3/s$ that is four times faster than normal grinding. Continuous chip formation was observed by a microscope.

  • PDF

원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성 (Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment)

  • 정충환;박지연
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.

주름진 박막을 전극으로 한 정전형 미세 구동기의 제작 (Fabrication of an Electrostatic Micro Actuator Using a Corrugated Diaphragm As an Electrode)

  • 김성윤;양의혁;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.207-209
    • /
    • 1993
  • In this paper, an electrostatic silicon micro actuator has been designed and fabricated using the micro machining technology. The actuator consists of two counter electrodes. One is an Al film deposited on a pyrex glass, and the other is a circular corrugated diaphragm with boron doped. The diaphragm is fabricated by boron etch stop technique using an anisotropic etchant, EPW.

  • PDF