• Title/Summary/Keyword: Silicate phosphor

Search Result 42, Processing Time 0.028 seconds

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

The Comparison of the Application of Two Different Color Quality Evaluation Methods

  • Jeong, Hee-Suk;Ryeom, Jeongduk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1673-1681
    • /
    • 2018
  • In this paper, the fabrication of a white light-emitting diode (WLED) package capable of producing different color rendering indexes (CRI ($R_a$)) using different types of phosphors (YAG:Ce, Silicate, Nitride, LuAG) for the LEDs is presented. The color quality is evaluated based on the current and temperature variation conditions. The evaluation method for color quality compares the existing CIE 13.3 method and the new IES TM-30-15 method. The CRI ($R_a$) defined in the conventional CIE 13.3 has the disadvantage. This cannot offer any information relevant to the user's preference. However, the newly proposed IES TM-30-15 method suggests the additional measure related to user's preference such as Color Gamut ($R_g$). The present experimental results obtained using the IES TM-30-15 show that the color quality of the WLEDs using green and red phosphors are better than that of the WLEDs using yellow phosphor, but their luminous efficacies are lower. The color quality of WLEDs using green and red phosphors are more stable than that of the WLEDs using yellow phosphor, for current and temperature variations, and it is verified that the phosphor causes this change. The evaluation method for color quality, based on IES TM-30-15, is proved to be capable of overcoming the problems of the existing evaluation methods by this study.

Discharging Characteristics of Green cell Using MgO-Coated $Zn_2SiO_4:Mn^{2+}$ Phosphor in Plasma Display Panel

  • Han, Bo-Yong;Jeoung, Byung-Woo;Hong, Gun-Young;Yoo, Jae-Soo;Ha, Chang-Hun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.575-578
    • /
    • 2004
  • The charging tendency of $Zn_2SiO_4:Mn^{2+}$ phosphor surface was modified in order to improve discharging characteristic of green cell in an ac-plasma display panel (ac-PDP). The Zinc-silicate ($Zn_2SiO_4:Mn^{2+}$) green-emitting phosphor was coated with magnesium oxide(MgO), which is viable to have positive charge on the surface. After fabricating the green cell with MgO-coated $Zn_2SiO_4:Mn^{2+}$, the electrical and optical properties in the cell were examined. It was found that the dynamic voltage margin could be increased while the address time was reduced. It may be ascribed to the change of charging tendency of $Zn_2SiO_4:Mn^{2+}$ phosphor by MgO coating, which makes it possible to stable wall-charge accumulation. When $Zn_2SiO_4:Mn^{2+}$ phosphor was coated with 1.3wt%-MgO, the address time was reduced 1.2 ${\mu}s$ and the address voltage lowered 25 V without any misfiring problem, compared to those of typical $Zn_2SiO_4:Mn^{2+}$ phosphor layer. The luminescence intensity of green cell using MgO-coated phosphor layer was also improved by 10%.

  • PDF

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • Seong, Bu-Yong;Jeong, Ha-Gyun;Park, Hui-Dong
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.636-640
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

  • PDF

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • 성부용;정하균;박희동
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.363-363
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

Monochromatic Amber Light Emitting Diode with YAG and CaAlSiN3 Phosphor in Glass for Automotive Applications

  • Lee, Jeong Woo;Cha, Jae Min;Kim, Jinmo;Lee, Hee Chul;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Monochromatic amber phosphor in glasses (PiGs) for automotive LED applications were fabricated with $YAG:Ce^{3+}$, $CaAlSiN_3:Eu^{2+}$ phosphors and Pb-free silicate glass. After synthesis and thickness-thinning process, PiGs were mounted on high-power blue LED to make monochromatic amber LEDs. PiGs were simple mixtures of 566 nm yellow YAG, 615 nm red $CaAlSiN_3:Eu^{2+}$ phosphor and transparent glass frit. The powders were uniaxially pressed and treated again through CIP (cold isostatic pressing) at 200 MPa for 20 min to increase packing density. After conventional thermal treatment at $550^{\circ}C$ for 30 min, PiGs were applied by using GPS (gas pressure sintering) to obtain a fully dense PiG plate. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30 wt% phosphor had full sintered density. Changes in photoluminescence spectra and color coordination were investigated by varying the ratio of $YAG/CaAlSiN_3$ and the thickness of the plates. Considering the optical spectrum and color coordinates, PiG plates with $240{\mu}m$ thickness showed a color purity of 98% and a wavelength of about 605 nm. Plates exhibit suitable optical characteristics as amber light-converting material for automotive LED applications.

High Luminance $Zn_2SiO_4$:Mn phosphors Prepared by Homogeneous Precipitation Method

  • Jung, Ha-Kyun;Sohn, Kee-Sun;Sung, Bu-Young;Park, Hee-Dong
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Manganese-doped $Zn_2SiO_4$ phosphors well known as a green emitter with high luminescence efficiency were prepared by the homogeneous precipitation method, and their photoluminescence properties under vacuum-ultraviolet (VUV) excitation were investigated. $Zn_2SiO_4$:Mn phosphors obtained by this method have exhibited a high luminance of property and a spherical shape of particles. In particular, the green emission intensity of zinc orthosilicate prepared as containing around 2 mole% of manganese was much stronger than that of the commercial $Zn_2SiO_4$:Mn phosphor, while the decay time was longer. However, addition of $Al^{3+}$ and $Li^+$ into $Zn_2SiO_4$:Mn composition has significantly diminished the decay time of the phosphor without much degradation of the emission intensity.

  • PDF

The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성)

  • Kang, Hee Sang;Park, Seung Bin;Koo, Hye Young;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis were investigated. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of $Ba_2SiO_4:Eu^{2+}$ phosphor was 500 nm. In case of x=2, the main emission peak of $Sr_2SiO_4:Eu^{2+}$ phosphor was 554nm. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles had large size and irregular shape. The $Ba_{1.488}Sr_{0.5}SiO_4:Eu_{0.012}{^{2+}}$ phosphor particles had the maximum PL intensity after post-treatment at temperature of $1300^{\circ}C$ for 3h under reduction atmosphere.

Temperature Effect on the Optical Properties of YAG and Silicate Phosphor-based White Light Emitting Diodes (온도 변화에 따른 YAG 및 Silicate형광체 기반 백색 LED의 광특성 변화에 대한 연구)

  • Choi, Hyun-Woo;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.135-142
    • /
    • 2013
  • Two white light emitting diodes(LEDs) were fabricated by using two kinds of yellow phosphor, YAG:Ce and $(Sr,Ba)_2SiO4:Eu$, and their spectroscopic properties were analyzed as a function of temperature from room temperature to $80^{\circ}C$. The asymmetric double sigmoidal function was applied to both blue and yellow peaks of the emitting spectrum to obtain the center wavelength, the amplitude, the half width, and the skewness parameters. According to this analysis, the center wavelength of the blue peak shifted to longer wavelength while that of the yellow peak shifted to shorter wavelength. In addition, some of the skewness parameters were found to increase upon heating, which indicates that spectrum asymmetry becomes enhanced at higher temperatures. The changes in the color coordinates and the luminous efficacy were larger for the case of silicate-based white LED. These results suggest that the silicate-based white LED is inferior to the YAG-based white LED from the viewpoint of color stability, efficacy and color rendering index.