• Title/Summary/Keyword: Silica-Sol

Search Result 387, Processing Time 0.026 seconds

Preparation of Glass Thin Film onto Plastic Surface by Sol-Gel Process (Sol-Gel 공정으로 Plastic표면에 Glass박막 제조에 관한 연구)

  • 양천회
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • Sol-gel derived silica films were prepared by dip-coating onto polymethylmethacylate with Tetraethoxysilane(TEOS) as starting materials. Film properties such as viscosity and thickness were investigated as a function of dip speed, waterprecursor ratio, sol aging time. IR spectra of the gel films prepared from TEOS at various R are given. At small values of R the absorption peaks assignable to C-H vibration in $-OC_2H_5$ groups are observed around 3000 and 1500-1300 $cm^{-1}$. These bands indicate that the -$-OC_2H_5$ groups are retained in the gel at small values of R because of incomplete hydrolysis of TEOS. Film behaviour was interpreted in terms of the dependence of hydrolysis and condensation rates on the interplay between sol pH and waterprecursor ratio. Film thickness was found to increase by approximately a factor of two as waterprecursor ratio increased from two to six. Film thickness also increased with sol prepolymerization time. Surface quality was correlated with processing conditions.

  • PDF

Fluorescence Spectroscopic and Atomic Force Microscopic Studies on the Microstructure of Polyimide/Silica-Titania Ternary Hybrid Composites

  • Park, Hae-Dong;Ahn, Ki-Youl;Mohammad A. Wahab;Jo, Nam-Ju;Kim, Il;Kim, Gyuhyun;Lee, Won-Ki;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.172-177
    • /
    • 2003
  • Biphenyltetracarboximide-phenylene diamine polyimide/silica-titania ternary hybrid composites were Prepared by thermal imidization and sol-gel reaction. Fluorescence spectroscopic, scanning electron microscopy, and atomic force microscopy studies revealed that the addition of small amount of titania showed profound effects on the microstructure and photophysical behaviors of polyimide/silica hybrid composites, when the content of silica-titania mixture was small or when the ratio of silica to titania in the mixture was high.

Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials

  • Shin, Yu-Shik;Park, Mira;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2979-2984
    • /
    • 2014
  • Silver nanoparticles have been synthesized by liquid-phase and alcohol reduction methods. Silver-doped silica-complex nanoparticles were prepared using a sol-gel process. The formation, structure, morphology, and particle size of the nanoparticles have been studied using several techniques. Silver nanoparticles of size of 30-40 nm were formed successfully by alcohol reduction. TEM images show that both the concentration and the molecular weight of polyvinyl pyrrolidone (PVP) considerably affect the size of the emerging silver nanoparticles. The number of silver-doped silica-complex particles increased by a mercapto-group treatment that showed a narrower size distribution than that of silica treated with amino groups. The silver/polyester and silver-doped silica/polyester masterbatch chips showed excellent antibacterial activity against Staphylococcus aureus and Escherichia coli.

Development of Silica Based Microgels and Evaluation of Their Performance in Microparticle Retention System

  • Kim, Tae-Young;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • The effectiveness of silica-based microgels prepared through the reaction of sulfuric acid and sodium silicate as a component of Compozil system has been evaluated . Silica based microgels with better performance in retention and drainage than a commercial colloidal silica sol have been successfully prepared. Silica gels with the highest charge density were obtained when product pH was controlled to 9. And highly charged silica-based microgels showed greater retention and freeness performance than a commerical product. In particular the difference in retention, turbidity , and freeness between these microgels and a commercial product was eminent at low addition rate. The effects of reaction conditions including reaction temperature, process water quality and feeing rate on product efficiency in improving retention and drainage were also investigated and discussed.

  • PDF

Mechanical Strength and Thermal Conductivity of Silica Aerogels Opacified by Adding Oxides (산화물 첨가에 의한 불투명화 실리카 에어로겔의 기계작 강도 및 열전도도)

  • 손봉희;김계태;현상훈;성대진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.829-834
    • /
    • 1999
  • The silica aerogels opacified via adding oxides were prepared by the sol-gel supercritical drying technique and their characteristics of mechanical strength and thermal conduction were investigated. The compressive strength of SiO2-10 mol% TiO2 and SiO2-10mol% Fe2O3 aerogels were 0.11 and 0.047 MP a respectively much higher than 0.025 MPa of pure silica aerogels. The thermal conductivity of silica aerogels opacified by TiO2 was as low as 0.02505 W/m${\cdot}$K at $400^{\circ}C$ It was found that the TiO2 -opacifier for improving mechanical strength and suppressing high temperature conduction of pure silica aerogels was more effective than the Fe2O3 -opacifier

  • PDF

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.

A Comparative Study on Morphologies and Characteristics of Silica Nanoparticles Recycled from Silicon Sludge Waste of Semiconductor Process Based on Synthesis Methods (반도체 공정에서 발생하는 폐실리콘 슬러지의 재활용을 통한 실리카 나노입자의 제조 및 합성법에 따른 형상 및 특성 비교 연구)

  • Jiwon Kim;Minki Sa;Yeon-Ryong Chu;Suk Jekal;Ha-Yeong Kim;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.5-13
    • /
    • 2023
  • In this study, a comparative study is conducted on the synthesis methods for silica nanoparticle employing the silicon sludge waste generated from the semiconductor manufacturing processes. Specifically, acid-washed silicon sludge wastes with no impurities are employed as the precursors of sol-gel and hydrothermal methods for silica nanoparticles preparation. The morphologies and properties of silica nanoparticles synthesized via two synthetic methods are examined by various analysis methods. As a result, silica nanoparticles from the sol-gel method are fabricated with high purity and uniform shape, while the hydrothermal method exhibits advantages in yield and ease of synthetic process. This comparative study offers detailed experimental results on the two synthetic methods for silica nanoparticle synthesis, which may contribute to the establishment of manufacturing high-value materials using the by-products generated in the semiconductor process.

Synthesis of New Black Pigment; Carbon Black Pigment Capsulated into the Meso-pore of Silica as Black Pigment in Cosmetic (새로운 Black Color의 합성;화장품에서 블랙 색소로서 Meso-pore Silca에 캡슐레이션된 Carbon-black Silica)

  • Hye-in, Jang;Kyung-chul, Lee;Hee-chang , Ryoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • Carbon black have not been used as pigment material in cosmetic because of very low density and dispersity, but carbon black have applicable character as black pigment because of non-toxic, stable physico-chemical property, and black colority. In this study, mesoporous silica samples were synthesized by sol-gel reaction using surfactants-template method; TEOS (tetraethoxysilane) - a) PEO/lecithin, b) PEO/polyethylene glycol, c) lecithin/polyethylene glycol in ethanol/water solution. Synthesized organic-inorganic hybrid - silica were heat-treated in N2 condition at 500$^{\circ}C$. Mesoporous silica with black carbon in pore have the effective density and show the good dispersity in both hydrophilic and hydrophobic solvent. Properties of the samples were measured; specific surface area (750㎡/g) and pore size (4-6nm) using BET, pore structure (cylindrical type) using XRD, morphology (spherical powder with 0.1-0.5$\mu\textrm{m}$ partical size) of the samples using SEM. Carbon-silica black color applied to mascara, it shows a dark black colority and good dispersity as compared with the general black color titania pigment. Moreover, it is possible to control the density of black color pigment because it is possible to control pore volume and particle size of mesoporous silica properly. It show the good volume effects in mascara. That is why possible to apply all kinds of cosmetic products.

Effect of Sinter Additives on Sol-Gel Derived Alumina Fibres

  • Lakshmi, N.S.;Gnanam, F.D.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.159-163
    • /
    • 2000
  • Alumina fibre has been synthesized successfully by sol-gel technique. Boehmite sol was prepared by hydrolyzing aluminium iso-propoxide and peptizing it with nitric acid. The stable sol thus obtained was used for fibre drawing when their viscosity reached the required value as a result of progress of the hydrolyzation and polycondensation reaction. The fibres dried at 11$0^{\circ}C$ for 12 hours were sintered at 1$600^{\circ}C$ for 5 hours. A reasonable sintered density with better microstructure and strength have been attained using 2 wt% of urea, magnesia and silica as sinter additives. Thermal analysis with sintering additives of 2 wt% and phase determination of the heat treated fibres using XRD and FT IR spectra confirms the phase transitions. The observation of surface and cross-section of the fibres were made using SEM. Fibres of uniform circular cross-section is obtained by fixing the shape in a setting solution.

  • PDF

Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding

  • Yoo, Jihye;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2765-2768
    • /
    • 2014
  • Flower-like Au nanoparticles, so-called Au nanoflowers (AuNFs), were synthesized by simply adding ascorbic acid to a gold acid solution in the presence of a chitosan biopolymer. The chitosan-entangled AuNFs exhibited strong plasmon absorption in the near-infrared (NIR) wavelength due to the aggregation of primary Au nanoparticles. The chitosan-entangled AuNFs were preferentially adsorbed by Raman-active 2-chlorothiophenol (CTP) molecules, and the CTP-encoded AuNFs (AuNF-CTPs) were subsequently coated with a thin silica layer by a sol-gel reaction with Si alkoxides. The silica-coated AuNFs (AuNF-CTPs@silica) exhibited the distinct Raman signals of adsorbed CTP molecules, as a potential nanoprobe with surface-enhanced Raman scattering (SERS).