• Title/Summary/Keyword: Silica-Sol

Search Result 387, Processing Time 0.029 seconds

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels (아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Kim, Younghun;Kim, Taehee;Shim, Jong Gil;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.143-148
    • /
    • 2018
  • Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

Optical Probe for Determination of Chromium(III) Ion in Aqueous Solution Based on Sol-Gel-Entrapped Lucigenin Chemiluminescence

  • Li, Ming;Kwak, Jun-Hee;Kim, Chang-Jin;Lee, Sang-Hak
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.103-108
    • /
    • 2003
  • A method to determine chromium(III) ion in aqueous solution by chemiluminescence method using a lucigenin entrapped silica sol-gel film has been studied. An optical probe for chromium(III) ion has been prepared by entrapping lucigenin into silica sol-gel film coated on a glass support by dip coating. The chromium(III) optical sensor is based on the catalytic effect of chromium(IIII) ion on the reaction between lucigenin and hydrogen peroxide in basic solutions. The effects of Nafion, DMF and Triton X-100 were investigated to find the optimum condition to minimize cracking and leaching from the probe. The effects of pH and concentrations of lucigenin and hydrogen peroxide on the chemiluminescence intensity were investigated. The chemiluminescence intensity was increased linearly with increasing chromium(III) concentration from $2.5{\times}10^{-4}$M to $8.0{\times}10^{-7}$M and the detection limit was $4.0{\times}10^{-7}$M.

  • PDF

Synthesis of Sol using acid Colloidal Silica and TMOS/MTMS (산성 Colloidal Silica와 TMOS/MTMS를 이용한 졸합성)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hye;Lee, Tae-Hui;Lee, Tae-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.154-157
    • /
    • 2004
  • 산성 colloidal silica(CS) 1034A, HSA와 TMOS, MTMS 실란 간의 졸겔반응조건이 코팅도막의 특성에 미치는 영향을 조사하기 위하여 1034A CS계에 대해서는 1단계로 실란들을 첨가하고 동일한 MTMS에 대해 CS/TMOS의 함량비, 반응시간을 달리하여 졸을 합성하였다. HSA계에 대해서는 2단계로 분리하여 TMOS, MTMS 실란을 첨가하는데 실란 첨가순서와 실란 함량비, 반응시간을 달리하여 졸을 합성하였다. 합성된 졸은 slide glass에 함침 코팅한 후 $300^{\circ}C$에서 경화시킨 도막의 특성들을 조사하였다. 1034A CS계는 CS/TMOS의 비가 70/30일 때 50/50인 경우보다 반응시간에 따라서 표면조도가 우수하여 접촉각에 영향을 덜 주므로 효과적인 균일 반응상으로 진행되었다. HSA CS계는 1단계로 MTMS를 먼저 첨가하고 MTMS/TMOS 비를 25/75로 첨가하면 반응시간에 따라서 표면조도 거칠기에 크게 영향 받지 않고 접촉각을 안정화시킬 수 있다.

  • PDF

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Preparation and Permeation Characteristics of PTMSP-PDMS-Silica/PEI Composite Membranes (PTMSP-PDMS-Silica/PEI 복합막의 제조 및 투과특성)

  • Lee, Hyun-Kyung;Hong, Se-Lyung
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.146-156
    • /
    • 2008
  • In this study, PTMSP of high permeability and high molecular weight was synthesized, and PTMSP-PDMS graft copolymer was synthesized from poly [1-(trimethylsily)propyne] (PTMSP) and hydroxy-terminated poly(dimethylsiloxane) (PDMS). The PTMSP-PDMS-silica composites were prepared by the addition of 15, 30, or 50 wt% tetraethoxysilane (TEOS) to PTMSP-PDMS graft copolymer by sol-gel process. To investigate the physico-chemical characteristics of PTMSP-PDMS-silica/PEI composite membranes, the analytical methods such as $^1H$-NMR, FT-IR, TGA, XPS, GPC, and SEM have been utilized. The gas permeability and selectivity properties of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$, were evaluated. Permeability of the composite membranes increased as TEOS content and pressure increased. Selectivity of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;and\;n-C_4H_{10}$, showed the maximum value at 30 wt% of TEOS content and decreased thereafter.

Shape Control of Silica-Polymethylsilsesquioxane (PMSQ) Composites by Varying Ratios of Precursors (전구체 비율에 따른 실리카-폴리메틸실세스퀴옥세인(PMSQ) 복합분체의 형태 제어)

  • Choi, Yigun;Choi, Jongmin;Kim, Hyojoong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.409-414
    • /
    • 2019
  • Silica and polymethylsilsesquioxane (PMSQ) are silicone powders widely used as cosmetics. We synthesized silica-PMSQ composites via sol-gel method using tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) as precursors of silica and PMSQ, respectively. Shape of the composites was controlled by varying the ratios of TEOS and MTMS, which were used as silane monomers. Silica-PMSQ composites showed three different shapes, which were sphere-shape, raspberry- shape, and donut- shape. All of them had soft touch, easy water dispersion, and soft focus effect in common. However, each shape showed some differences in sense of use, adhesion, and strength of the soft focus effect. Raspberry-shape composite had the strongest soft focus effect, donut-shape one had the strongest adhesion, and sphere-shape one had the best in softness. Thus, it is concluded that by varying the ratios of TEOS and MTMS silica-PMSQ composites could be easily synthesized into different shapes, providing various functions. This method can be applied to manufacture functional cosmetics.

Carbon-Silica Membranes Derived from Polyimide/Silica Composites for Gas Separation

  • Lee, Young-Moo;Park, Ho-Bum;Kim, Myung-Jun;Jang, Jeong-Gyu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.47-50
    • /
    • 2003
  • Carbon-silica membranes were Prepared by Pyrolyzing polyimide/silica composite obtained from ill-situ polymerization of alkoxy silanes via sol-gel reaction. In this study, effects of silica content and silica network in polyimide matrix were focused on the gas permeation and separation properties of the final carbon-silica membrane. The membranes prepared were characterized with a field emission scanning electron microscopy (FE-SEM), a solid state $^{29}$ Si nuclear magnetic resonance spectroscopy ($^{29}$ Si-NMR), an electron spectroscopy for chemical analysis (ESCA), a thermogravimetric analysis (TGA) and gas permeation tests.

  • PDF

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process (졸겔공법을 이용한 복합상변화물질의 열성능 평가)

  • Jin, Xinghan;Haider, Muhammad Zeeshan;Park, Min-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.555-566
    • /
    • 2023
  • In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.

Synthesis and Characteristics of Hard Coating Solution Using Colloidal Silica and Organic Silane through Sol-Gel Process (졸-겔 법에 의한 콜로이드 실리카와 유기 실란을 이용한 하드코팅 용액의 제조 및 특성)

  • Son, Dae Hee;Lee, Yun-Yi;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.691-696
    • /
    • 2011
  • Organic-inorganic hybrid coating solutions were prepared by using a sol-gel method for transparent film. In this study, colloidal silica (CS) and alkoxy silane such as vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltri methoxy silane (MAPTMS) were used in various conditions such as types of organic silane, weight ratios of CS to silane and reaction times. Coating solutions which were bar coated on the PET (polyethyleneterephthalate) film and cured were investigated on the chemical and physical properties. The pencil hardness and adhesion of coating films were increased with increasing the organic silane content in the coating solution compared to that of PMMA (polymethamethylcrylate) coating solution.

Hard Coatings on Polycarbonate Plate by Sol-Gel Reactions of (3-glycidoxypropyl)trimethoxysilane and Colloidal Silica (폴리카보네이트 판 위에 (3-glycidoxypropyl)trimethoxysilane과 Colloidal Silica의 졸-겔 반응을 이용한 하드 코팅)

  • Kim, Ju Youn;Oh, Mee Hye;Yoon, Yeo Seong;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • The hard coatings on the polycarbonate plate were performed with the object of substitution the glass in the car to the polycarbonate plate. In this research, (3-glycidoxypropyl)trimethoxysilane (GPTMS), colloidal silica (CS), and (3-aminopropyl)triethoxysilane (APS) were used to prepare the coatings by sol-gel process. The optimum conditions and formulation to get the excellent physical properties of the coating were determined. GPTMS and CS were hydrolyzed in ethanol, and then APS was added in this solution. Using these solution the hard coating were applied to the polycarbonate plate. The smooth coating which got the 2 H class in pencil hardness was formed. And this coating showed excellent abrasion resistant and adhesion property.

  • PDF