• Title/Summary/Keyword: Silica sand

Search Result 239, Processing Time 0.026 seconds

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.

Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions (합성 및 원료 조건에 따른 γ-C2S의 순도)

  • Lee, Seok-Hee;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixing capacity and the production process with low CO2 emission, γ-C2S has attracted more attention of researchers. For the further development of γ-C2S applications in construction industry, this study aims to investigate the method for synthesizing high purity of γ-C2S. The influence of raw materials and calcination temperatures on the purity of γ-C2S was evaluated. Several Ca bearing materials were selected as the calcium source, the materials which's main component is SiO2 were used as the silicon source. Raw materials were mixed and calcined under different temperatures. The results revealed that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. In addition, a relatively economic synthesis method using natural mineral materials-limestone and silica sand as raw materials were developed for the practical application. The purity of synthetic γ-C2S was recorded up to 77.6%.

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.

A taxonomic study on sect. Rhomboidales Kük. and sect. Digitatae Fr. of genus Carex L. subgen. Eucarex Cross & Germ. (Cyperaceae) in Korea (한국산 사초속 사초아속(Carex L. subgen. Eucarex Cross & Germ.) 피사초절과 그늘사초절 식물의 분류학적 연구)

  • Oh, Yong Cha;Kim, Ji Hyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.32 no.3
    • /
    • pp.301-338
    • /
    • 2002
  • Morphological characters of sections Rhomboidales (four taxa) and Digitatae (seven taxa) of the subgen. Eucarex (genus Carex, Cyperaceae) were reexamined. The epidermal patterns of perigynium, achene and leaf were investigated by SEM and LM. Morphological characters such as length and width of stem, leaf, bract, spike, scale, perigynium and achene, and shape of cross-sectioned stem, spike, scale, apex of scale, perigynium, beak and base of perigynium, achene, hair present or absent in perigynium, number of involucre and epidermal pattern of perigynium, achene and leaf(shape of fundamental epidermal cell and cell wall, type of silica body, shape of beak epidermal cell and cell wall in perigynium, subsidiary cell shape, size and frequency of stomatal complex of leaf) were useful for the identification of the observed 11 taxa. According to the current study, examined 11 taxa of sections Rhomboidales and Digitatae were distinct from each other regarding by length of leaf, stem, pistillate scale and perigynium, shape and epidermal cell of perigynium beak. C. lanceolata and C. humilis have been confused due to similar morphological characters. C. lanceolata and C. humilis were distinct, however with respect to from length of stem, leaf ligule present or absent, shape of cross-sectioned stem, epidermal patterns of perigynium, achene and leaf. And C. lanceolata could be distinguished from C. pediformis by shape of perigynium and achene, shape of cross-sectioned of stem, epidermal pattern of perigynium, achene and leaf.

In vitro wear behavior between enamel cusp and three aesthetic restorative materials: Zirconia, porcelain, and composite resin

  • Jang, Yong-Seok;Nguyen, Thuy-Duong Thi;Ko, Young-Han;Lee, Dae-Woo;Baik, Byeong Ju;Lee, Min-Ho;Bae, Tae-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • PURPOSE. The aim of this study was to identify the effects of three aesthetic restorative materials on the wear between tooth and restoration by a pin-on-disk manner. MATERIALS AND METHODS. Six aesthetic restorative materials were used to prepare disk specimens for wear test, which were Lava Zirconia as zirconia group, Vintage MP and Cerabien ZR as veneering porcelain group, Gradia Direct microhybrid composite containing prepolymerized fillers, Filtek Z250 microhybrid composite containing zirconia glass and colloidal silica particles, and Filtek Z350 nanocomposite as composite resin group. Vertical loss of the worn cusp, change of the surface roughness of the restoration materials, and the surface topography were investigated after wear test under 9.8-N contact load. RESULTS. The porcelain groups (Vintage MP and Cerabien ZR) caused the largest vertical loss of teeth when compared with those of the composite resin and zirconia groups, and Filtek Z250 microhybrid composite results in the second-largest vertical loss of teeth. The surface of Filtek Z350 nanocomposite was deeply worn out, but visible wear on the surface of the zirconia and Gradia Direct microhybrid composite was not observed. When the zirconia surface was roughened by sand-blasting, vertical loss of teeth considerably increased when compared with that in the case of fine polished zirconia. CONCLUSION. It was identified that microhybrid composite resin containing a prepolymerized filler and zirconia with reduced surface roughness by polishing were the most desirable restorative materials among the tested materials to prevent the two-body wear between aesthetic restorative material and tooth.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test (1g 진동대 실험을 이용한 철도 제방의 재액상화 거동 연구)

  • Chae, Minhwan;Yoo, Mintaek;Lee, Il-Wha;Lee, Myungjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.71-81
    • /
    • 2021
  • The purpose of this study is liquefaction phenomenon was simulated using the 1g shaking table test. Analysis of liquefaction and Re-liquefaction behavior according to the ground conditions was analyzed when an embankment exists above the ground. The soil used in the experiment was silica sand and the ground composition was a liquefied layer of 50cm (Case 1), a non-liquefied layer of 17.5cm and a liquefied layer of 32.5cm (Case 2). The embankment was formed by fixing the height of 10cm and the slope of the slope at a ratio of 1:1.8. For seismic waves, excitation of a 5Hz sine wave was performed for 8 seconds, and a total of 5 case excitations were performed. In Case 1, it was confirmed that liquefaction occurred at all depths during the first vibration excitation at the free-field and that liquefaction did not occur at all depths except 5cm at the third vibration excitation. At the center of the embankment, liquefaction occurred up to a depth of 20cm during the first vibration excitation, and it was confirmed that liquefaction did not occur at all depths except for a depth of 5cm during the second vibration excitation.