• Title/Summary/Keyword: Silica sand

Search Result 239, Processing Time 0.027 seconds

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

Durability Assessment for Crushed Sand Wet-mix Shotcrete Mixed with Mineral Admixtures (부순모래를 사용한 습식 숏크리트의 광물성 혼화재료 혼입에 따른 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2014
  • The purpose of this dissertation was to investigate the effect of mineral admixtures, such as fly ash, blast furnace slag powder, meta kaolin and silica fume, on the basic properties and durability of crushed sand shotcrete, selecting a series of shotcrete mixtures with a variable admixture. Compressive strength increased as the content of mineral admixtures increased, specially it was the most effective when using meta kaolin both at sample specimen and core after shotcreting. Rapid chloride ion permeability test and sulfuric acid resistance test showed that both durability increased as the substitute rate of mineral admixture increased. In air void analysis with image analysis, the targeted the spacing factor and specific surface were not satisfied because air-entrained agent was not used.

Transports of Ferrihydrite Colloids in Packed Quartz Sand Media (석영모래 속에서의 Ferrihydrite 콜로이드 이동)

  • Kim, Seok-Hwi;Gu, Baohua;Lee, Jae-Hoon;Wang, Wei;Park, Ki-Hoon;Kim, Kang-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.231-238
    • /
    • 2006
  • Transports of heterogeneously charged particles were investigated based on column experiments. Synthesized mono-dispersed ferrihydrite (${\sim}100nm$) and amorphous $SiO_2\;({\sim}40nm\;and\;{\sim}80nm)$ particles, of which surfaces are oppositely charged under pH < 9.0 (ferrihydrite, positive; amorphous silica, negative), were used. $177{\sim}250{\mu}m$ quartz sand was used as a stationary matrix. The results show that even favorable particles (i.e., ferrihydrite) can show a conservative transport through the oppositely charged media (i.e., quartz) when they coexist with humic acid or with much greater number of oppositely charged particles. These results imply that transports of both negatively and positively charged contaminants may be possible at the same time under a condition of heterogeneous colloidal system.

Separation Technology of Pure Zirconia from Zirconsand by the Ar-H2 Arc Plasma Fusion and Sulfuric Acid Leaching with Microwave Irradiation (Ar-H2플라즈마 건식제련과 마이크로웨이브침출을 통한 지르콘샌드로부터 고순도 지르코니아 분리)

  • Lee, Jeong-Han;Hong, Sung-Kil
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.49-54
    • /
    • 2016
  • In this study, zircon sand is separated into zirconia and silica by using the Ar-$H_2$ arc plasma refining. And then silica is removed from it by the microwave leaching method to produce a high pure zirconia. Plasma melting consist of two sequential processes; reduction process with Ar gas only followed by refining process with Ar-$H_2$ gas. After cooling in chamber. The solid phase obtained at $240^{\circ}C$ were found to be composed of 20% sulfuric acid solution. The solution was used as a leaching solution with microwave irradiation to obtain a high purity zirconia.

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier (미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구)

  • Han, Si Woo;Seo, Myung Won;Park, Sung Jin;Son, Seong Hye;Yoon, Sang Jun;Ra, Ho Won;Mun, Tae-Young;Moon, Ji Hong;Yoon, Sung Min;Kim, Jae Ho;Lee, Uen Do;Jeong, Su Hwa;Yang, Chang Won;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.874-882
    • /
    • 2019
  • In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Rheological properties of self consolidating concrete with various mineral admixtures

  • Bauchkar, Sunil D.;Chore, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • This paper reports an experimental study into the rheological behaviour of self consolidating concrete (SCC). The investigation aimed at quantifying the impact of the varying amounts of mineral admixtures on the rheology of SCC containing natural sand. Apart from the ordinary Portland cement (OPC), the cementitious materials such as fly ash (FA), ground granulated blast furnace slag (GGBS) and micro-silica (MS) in conjunction with the mineral admixtures were used in different percentages keeping the mix paste volume and flow of concrete constant at higher atmospheric tempterature ($30^{\circ}$ to $40^{\circ}C$). The rheological properties of SCC were investigated using an ICAR rheometer with a four-blade vane. The rheological properties of self-consolidating concrete (SCC) containing different mineral admixtures (MA) were investigated using an ICAR rheometer. The mineral admixtures were fly ash (FA), ground granulated blast furnace slag (GGBS), and micro silica (MS). The results obtained using traditional workability results are compared with those obtained using ICAR rheometer. The instrument ICAR (International Center for Aggregate Research) rheometer employed in the present study for evaluating the rhelogical behaviour of the SCC is found to detect systematic changes in workability, cementitious materials, successfully. It can be concluded that the rheology and the slump flow tests can be concurrently used for predicting the flow behaviours of SCC made with different cementitious materials.

Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete

  • Erdogdu, Sakir;Kandil, Ufuk;Nayir, Safa
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.139-144
    • /
    • 2019
  • In this study, the mechanical properties of reactive powder concrete (RPC) with a constant cement to silica fume ratio of 4 were investigated. In the experimental program, reactive powder concretes with steel fiber at different ratios were produced. Five productions using quartz sand with a maximum grain size of 0.6 mm were performed. A superplasticizer with a ratio of 3% of the cement was used for all productions. $40{\times}40{\times}160mm$ prismatic specimens were prepared and tested for flexural and compression. The specimens were exposed to two different curing conditions as autoclave and standard curing condition. Autoclave exposure was performed for 3 hours under a pressure of 2 MPa. It was observed that the compressive strength of concrete, along with the flexural strength exposed to autoclave was quite high compared to the strength of concretes subjected to standard curing. The results obtained indicated that the compressive strength, along with the flexural strength of autoclaved concrete increased as the amount of cement used increases. Approximately 15% increase in flexural strength was achieved with a 4% steel fiber addition. The maximum compressive strength that has been reached is over 210 MPa for reactive powder concrete for the same steel fiber ratio and with a cement content of $960kg/m^3$. The relationship between compressive strength and flexural strength of reactive powder concrete exposed to both curing conditions was also identified.