• Title/Summary/Keyword: Silene acaulis

Search Result 4, Processing Time 0.021 seconds

Cushion plant Silene acaulis is a pioneer species at abandoned coal piles in the High Arctic, Svalbard

  • Oh, Minwoo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Background: Abandoned coal piles after the closure of mines have a potential negative influence on the environment, such as soil acidification and heavy metal contamination. Therefore, revegetation by efficient species is required. For this, we wanted to identify the role of Silene acaulis in the succession of coal piles as a pioneer and a nurse plant. S. acaulis is a well-studied cushion plant living in the Arctic and alpine environments in the northern hemisphere. It has a highly compact cushion-like form and hosts more plant species under its canopy by ameliorating stressful microhabitats. In this research, we surveyed vegetation cover on open plots and co-occurring species within S. acaulis cushions in coal piles with different slope aspects and a control site where no coal was found. The plant cover and the similarity of communities among sites were compared. Also, the interaction effects of S. acaulis were assessed by rarefaction curves. Results: S. acaulis was a dominant species with the highest cover (6.7%) on the coal piles and occurred with other well-known pioneer species. Plant communities on the coal piles were significantly different from the control site. We found that the pioneer species S. acaulis showed facilitation, neutral, and competition effect in the north-east facing slope, the south-east facing slope, and the flat ground, respectively. This result was consistent with the stress gradient hypothesis because the facilitation only occurred on the north-east facing slope, which was the most stressed condition, although all the interactions observed were not statistically significant. Conclusions: S. acaulis was a dominant pioneer plant in the succession of coal piles. The interaction effect of S. acaulis on other species depended on the slope and its direction on the coal piles. Overall, it plays an important role in the succession of coal piles in the High Arctic, Svalbard.

Multiple Shoot Induction from Radicle-derived Callus and in Vitro Propagation of Silene Acaulis Subsp. Arctics (극지식물 Silene acaulis subsp. arctica의 유근 유래 캘러스로부터 다신초 유도와 기내 증식)

  • Seo, Hyo-Won;Yi, Jung-Yoon;Park, Young-Eun;Kang, Sung-Ho;Chung, Ho-Sung;Kim, Ji-Hee
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.303-307
    • /
    • 2006
  • We describe here an efficient in vitro propagation method of Silene acaulis subsp. arctica (Caryophyllaceae), one of the higher arctic angiosperms, through the multiple shoot regeneration after callus induction from the radicle. The seeds of S. acaulis subsp. arctica collected from Svalbard, the Norwegian Arctic, were germinated and calli were induced from the radicle on solid MS media supplemented with 0.25mg/L 2,4-D and 1mg/L $GA_3$ at both $10{\pm}1^{\circ}C\;and\;23{\pm}1^{\circ}C$ Two weeks after callus induction, the multiple shoots were efficiently regenerated on the MS media supplemented with 0.25 g/L BA and 0.05mg/L HPh. The total biomass increment of regenerated shoots increased most efficiently of S. acaulis subsp. afctica was showed the maximum efficiency in at $23{\pm}1^{\circ}C$ on 1/2 MS salt strength. The multiple regenerated plantlets of S. acaulis subsp. arctics were grown to normal plants on soil.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard

  • Son, Deokjoo;Lee, Eun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1275-1283
    • /
    • 2022
  • Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.