• Title/Summary/Keyword: Significant wave height

Search Result 234, Processing Time 0.023 seconds

Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions (Sluice Gate를 이용한 고립파 발생조건에 따른 형상 및 압력 특성에 관한 실험적 연구)

  • Cho, Jae Nam;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • Recently, coastal erosion has been widely in progress and the erosion level becomes also serious in the world wide, espeically in East Sea in Korea. Since it would threaten the life, economics and security risk, it is necessary to much comprehend the reason why coastal erosion has occurred according to the geographical characteristics. Meanwhile, analysis about hydrodynamics of the solitary wave such as tunami in swash zone is needed for the best management practice of coastal erosion. Solitary wave is nonlinear wave and can be reproduced in the laboratoy scale by openning suddenly a sluice gate with water head difference, of which methodology was found in the literature, since it could be simply determined by a significant wave height. Thus, in this sutdy the generation of solitary wave was experimentalized using the sluice gate. Experimental conditions were classified by angles of a beach slope, a water level in a beach slope and a difference of water level between in a headtank and a channel bed. Two kinds of dimensionless analyses based from experimental results in this study were presented; the first analysis indicates nondimensionalization between the wave height and the water level in a beach slope in order to investigate characteristics of solitary wave approaching the beach. The second shows the other nondimensionalization between dynamic pressure and static pressure on a beach slope to investigate the relationship between wave breaking and wave pressure. Under the same conditions as laboratory experiments, the numerical results computed with a SWAN model embedded in FLOW 3D were compared in terms of wave height, and pressure on the beach slope, which shows good agreement with each other. Overall results from this study could provide fundamental hydraulic data for the reliabile verification of numerical simulation results about coastal erosion in swash zone caused by solitary waves.

Wave Data Analysis for Investigation of Freak wave Characteristics (Freak Wave 특성 파악을 위한 파랑관측 자료의 분석)

  • Shin, Seung-Ho;Hong, Key-Yong;Moon, Jae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.471-478
    • /
    • 2007
  • This study is carried out the investigation of nonlinear characteristics of the field wave observation data acquired in the western sea area in Jeju island during one year. It is aimed to offer the fundamental data for Freak wave forecasting in real sea. For this, the nonlinear parameters of ocean waves, which are Skewness, Atiltness, Kurtosis and Spectrum band width parameter et al., are introduced, and the parameters are compared and discussed with some characteristics wave components, ie, significant wave height, maximum wave height, and so on. As a results, we know that the parameters describe nonlinear characteristics of observed wave spectrum broadly, are feebly related with occurrence of abnormal maximum wave height, namely freak event, however the Kurtosis, $K_t$ which is a degree of peakness of mode of surface elevation distribution, has better relationship than others.

Development of a Probabilistic Model for the Estimation of Yearly Workable Wave Condition Period for Offshore Operations - Centering on the Sea off the Ulsan Harbor (해상작업 가능기간 산정을 위한 확률모형 개발 - 울산항 전면 해역을 중심으로)

  • Choi, Se Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.115-128
    • /
    • 2019
  • In this study, a probabilistic model for the estimation of yearly workable wave condition period for offshore operations is developed. In doing so, we first hindcast the significant wave heights and peak periods off the Ulsan every hour from 2003.1.1 to 2017.12.31 based on the meteorological data by JMA (Japan Meterological Agency) and NOAA (National Oceanic and Atmospheric Administration), and SWAN. Then, we proceed to derive the long term significant wave height distribution from the simulated time series using a least square method. It was shown that the agreements are more remarkable in the distribution in line with the Modified Glukhovskiy Distribution than in the three parameters Weibull distribution which has been preferred in the literature. In an effort to develop a more comprehensive probabilistic model for the estimation of yearly workable wave condition period for offshore operations, wave height distribution over the 15 years with individual waves occurring within the unit simulation period (1 hour) being fully taken into account is also derived based on the Borgman Convolution Integral. It is shown that the coefficients of the Modified Glukhovskiy distribution are $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$, and the yearly workable wave condition period for offshore work is estimated to be 319 days when a threshold wave height for offshore work is $H_S=1.5m$. In search of a way to validate the probabilistic model derived in this study, we also carry out the wave by wave analysis of the entire time series of numerically simulated significant wave heights over the 15 years to collect every duration periods of waves the height of which are surpassing the threshold height which has been reported to be $H_S=1.5m$ in the field practice in South Korea. It turns out that the average duration period is 45.5 days from 2003 to 2017, which is very close to 46 days from the probabilistic model derived in this study.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Field Wave Data Analysis for Investigation of Freak wave Characteristics (Freak wave 특성 파악을 위한 파랑관측 자료의 분석)

  • Shin, Seung-Ho;Hong, Key-Yong;Moon, Jae-Seung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.175-180
    • /
    • 2006
  • This study is carried out the investigation of nonlinear characteristics of the ocean based on the field wave observation data acquired the western sea area in Jeju island during one year. It is aimed to offer the fundamental data for Freak wave forecasting in real sea. For this, the nonlinearity parameters of ocean waves, which are Skewness, Atiltness, Kurtosis and Spectrum band width parameter, are introduced, and the parameters are compared and discussed with some characteristic wave components, ie, significant wave height, maximum wave height, and so on.

  • PDF

The Effect of Sampling Rate on Statistical Properties of Extreme Wave (파랑자료의 sampling rate가 극한파의 통계에 미치는 영향)

  • Kim, Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this paper time series wave data are simulated using wave spectrum with random phases of the wave signal. The simulated wave signals are used to study the effect of the sampling rate on the ocean wave characteristics. Effect of sampling rate on wave data which include extreme wave such as freak waves are examined and various wave characteristics including abnormality index (AI), kurtosis of wave profile and maximum wave height are examined. Various wave heights are decreased as the sampling rate decreases. The zero-th moment of the wave spectrum does not affect much on the sampling rate but the second moment are greately affected on the sampling rate. The error due to the sampling rate is decreases as the wave period increases. The error in significant wave height based on the wave spectrum $H_s$ is smaller than that on the time domain method $H_{1/3}$. AI index and kurtosis of wave profile do not deviate much from the exact date as long as the sampling rate is greater than 1 Hz. Ocean wave measurement with the sampling frequency higher than 1 Hz will result the error less than 5% in estimating the height of extreme waves.

A Study on the Characteristics of Excess Attenuation of the Sound due to the Ground (지표면에 의한 음의 초과 감쇠 특성 연구)

  • 황철호;정성수
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.401-409
    • /
    • 1997
  • This study observed the meterological influence on the excess attenuation with various flow resistivities. The flow resistivity is simulated up to 30, 000 cgs rayls. There is no significant differences among results from spherical wave analysis for excess attenuation, from plane wave analysis, and from locally reacting analysis. This is validated only when the flow resistivity is more than 100 cgs rayls. For the determination of effective flow resistivity of ground by measuring the excess attenuation experimentally, it is highly recommended that the distance between source and receiver is about 2.5m, and that the height of them is 0.3-0.4 m in case that they have the same height. Under this proposed conditions, the flow resistivity of 6-month-passed asphalt ground is estimated to 5, 000 cgs rayls by comparing the measured excess attenuation with the calculated.

  • PDF

Note on the appearance of Freak Waves from in-situ ocean wave data

  • Tomita, Hiroshi;Waseda, Takuji
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.105-112
    • /
    • 2006
  • Freak waves in the ocean are recently drawing much attention as a natural disaster to ocean structures and navigating ships as well. Several observation data, among them the Draupner New Year Wave, show the very impressive feature of Freak waves whose wave height is up to three times as high as the significant wave height of surrounding waves, In addition, Freak wave appears as an isolated very high crest in somewhat stationary random waves of same order in their wavelengths. Bearing such characteristics in mind, one notices its extraordinary steepness. This strongly suggests that Freak wave is not long lived but transient nature on the whole. A great number of studies to explain these natures were published from both theoretical and numerical point of view. However it is not sure if they are applicable to actual ocean environment. In this paper, we deal with the results concerning abnormal and/or Freak waves from in-situ ocean wave data and point out several remarks to the problems lain behind the contributions in this context. A physical experiment is described to reinforce the subject discussed from the observation data.

  • PDF

The Water Wave Scattering by the Marine Structure of Arbitrary Shape (임의 형태의 해양구조물에 의한 해수파의 산란)

  • 신승호;이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF