• Title/Summary/Keyword: Significant wave height

Search Result 237, Processing Time 0.033 seconds

Evaluation of the Harbor Operation Rate Considering Long Period Waves (장주기파를 고려한 항만 가동율의 평가)

  • 김규한
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • In this study, the characteristics of long period waves are analyzed by field observation at Sokcho harbor on the eastern coast of Korea. firstly. the pressure data obtained from field observation are transformed into water surface elevations and the wave by wave analysis is applied to the observed wave data. also, we select long period waves by setting up the range 30-200sec, and suggest the relationship between ordinary waves and long period waves using the concept of the significant wave height. and, we examine the effects oft he long period waves on the rate of the harbor operation. The observation results demonstrate that the long period waves with heights of 1.2-14.6cm and periods of 35.8-162sec exist at Sokcho harbor. also, we found the rates of harbor operation based on long period waves are 61.8%-99.5% lower than the usual rates of 93.8%-100%.

A Study on the Method of Safe Shiphandling in Violently Rough Sea by Typoon or Hurricane

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The object of this study is to develop the method of safe conducting of a vessel through stormy sea when we encounter typoon or hurricane on ocean. The scope of investigation in this paper will be limited to safe maneuvering related only with rolling motions of a vessel. The processes of investigations are as follows; Firstly, we decide a CPA(Closest Point of Approach) with the center of the storm and decide significant wave height($H_{1/3}$) by SMB method and then calculate wave height of the highest of 1000 waves($H_{1/1000}$) and other data. Secondly, we make mathematical model of rolling motions of the vessel on the stormy sea and calculate the biggest rolling angle of the vessel and etc. Thirdly, we decide the most safe maneuvering method to ride out the stormy sea. By the above mentioned method we are able to calculate the status of the stormy sea and ships motions to be encountered and ride out safely through violently rough sea.

Sensitivity of Input Parameters in the Spectral Wave Model

  • Park, Hyo-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.

Sea state description of Asabo offshore in Nigeria

  • Jasper, Agbakwuru A.;Bernard, Akaawase T.;Gudmestad, Ove T.
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.25-47
    • /
    • 2020
  • A study of the wave conditions for the Asabo offshore location at the Qua Iboe oil field in Eastern Nigeria has been carried out. Statistical analysis was applied to three (3) years of data comprising spectral periods, Tp and significant wave heights, Hs. The data was divided into two (2); data from October to April represents one set of data and data from May to September represents another set of data. The results were compared with similar studies at other locations offshore of West Africa. It was found that there is an absence of direct swellwaves from the Southern Ocean reaching the location under study (the Asabo site). This work suggests that the wave system is largely emanating from the North Atlantic storms. The presence of numerous islands near the Asabo location shields the site from effects of storms from south west and therefore swells from the Southern Ocean. It is noted that the local wind has little or no contribution. An Hs maximum of 2 m is noted at the Asabo offshore location. It is found that the Weibull distribution best describes the wave distribution at Asabo. Thus, the Weibull distribution is suggested to be adequate for long term prediction of extreme waves needed for offshore design and operations at this location.

Wavelet Analysis of Swells in the East Sea (동해 너울에 대한 웨이블릿 분석)

  • Kim, Tae-Rim;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.583-588
    • /
    • 2008
  • Swell data observed in the East Sea in February, 2008 were analyzed using wavelet method. The wavelet analyzed results show detailed time series variation of wave group, peak frequency and spectrum. The comparison of time averaged wavelet spectrum with fourier spectrum turn out to be very similar in terms of spectrum shape and peak frequency evolution but the peak frequency wave energy and the significant wave height show discrepancies. Wavelet analysis can detect the change of spectrum in time as well as in frequency and very efficient to study transient and irregular phenomena such as freak waves and abnormal swells in the ocean. More analysis with more wave data are needed for future application.

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data (HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Kim, Ji-Young;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.217-225
    • /
    • 2021
  • In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

Optimal Estimation of the Peak Wave Period using Smoothing Method (평활화 기법을 이용한 파랑 첨두주기 최적 추정)

  • Uk-Jae, Lee;Byeong Wook, Lee;Dong-Hui, Ko;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.266-274
    • /
    • 2022
  • In this study, a smoothing method was applied to improve the accuracy of peak wave period estimation using the water surface elevation observed from the Oceanographic and Meteorological Observation Tower located on the west coast of the Korean Peninsula. Validation of the application of the smoothing method was per- formed using variance of the surface elevation and total amount wave energy, and then the effect on the application of smoothing was analyzed. As a result of the analysis, the correlation coefficient between variance of the surface elevation and total amount wave energy was 0.9994, confirming that there was no problem in applying the method. Thereafter, as a result of reviewing the effect of smoothing, it was found to be reduced by about 4 times compared to the confidence interval of the existing estimated spectrum, confirming that the accuracy of the estimated peak wave period was improved. It was found that there was a statistically significant difference in proba- bility density between 4 and 6 seconds due to the smoothing application. In addition, for optimal smoothing, the appropriate number of smoothings according to the significant wave height range was calculated using a statistical technique, and the number of smoothings was found to increase due to the unstable spectral shape as the significant wave height decreased.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.