• Title/Summary/Keyword: Significant wave height

Search Result 236, Processing Time 0.021 seconds

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.

Calculating Expected Damage of Breakwater Using Artificial Neural Network for Wave Height Calculation (파고계산 인공신경망을 이용한 방파제 기대피해도 산정)

  • Kim, Dong-Hyawn;Kim, Young-Jin;Hur, Dong-Soo;Jeon, Ho-Sung;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • An approach to calculating expected damage of breakwater assisted by artificial neural network was developed. Wave height in front of a breakwater was predicted by a trained artificial neural network with inputs of wave height in deep ocean and tidal level. Prediction results by the neural network can be comparable to that by professional numerical model for wave transformation. Using the wave prediction neural network, it was very easy and fast to obtain a number of significant waves at breakwater and finally analysis time for expected damage can be shortened. In addition, the effect of considering tidal level in the calculation of expected damage was revealed by comparing the expected damages with and without tidal variation. Therefore, it was pointed out that tidal variation should be considered to improve prediction accuracy.

Characteristics of Waves around the Sea near Busan New Port Based on Continuous Long-term Observations during Recent 10 years (최근 10년간 장기연속관측에 근거한 부산항 신항 인근 해역의 파랑특성)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Baek, Won-Dae;Chae, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.109-119
    • /
    • 2012
  • Long-term wave observation was carried out near Busan New Port and the major wave characteristics were analyzed. At Busan New Port, waves from south direction were predominant throughout the year, while waves from the west, developed at the north sea of Geoje island, appeared almost the same frequency in winter season, showing apparent seasonal variation. During the observation period, the significant wave height was mostly less than 1 m, but it reached its maximum of 8.0 m when typhoon Maemi passed on September 2003. Also, the seasonal variation was hardly observed except July. In contrast, seasonal variation was apparent for the significant wave period, whose peak ranges 4~5 s in summer whereas about 3 s in winter. The largest significant wave period was 15.56 s, observed on June 2003. Meanwhile, the annual variation was negligible for mean wave direction as well as significant wave height and period. Further analysis of the wave data acquired for 5 years at 4.5 km south, in the south sea of Daejuk island, confirmed high correlation between the two observation points in summer and vice versa in winter.

On the Statistical Characteristics of the New Year Wave (New Year Wave의 통계적 특성에 대하여)

  • Kim, Do Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2013
  • In this paper time series wave data, which were measured at the Draupner platform in the North Sea on 1995, are used to investigate statistical characteristics of nonlinear wave. Various statistical properties based on time and frequency domain are examined. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The skewness of wave profile is 0.393 and the kurtosis is 4.037 when the freak wave is occurred. The nonlinearity of D1520 data is higher than two adjacent wave data. AI index of the New Year Wave is 2.11 and the wave height is 25.6m. The zero crossing wave period of the New Year Wave is 12.5s which is compared to the average zero up-crossing period 11.3s. The significant steepness of wave data is 0.077 when the freak wave was occurred. H1/3/${\eta}_s$ does not increases as the kurtosis increases and the values is close to 4. The New Year Wave belongs to highly nonlinear wave data packet but the AI index is within linear focusing range.

Seasonal Characteristics of Sea Surface Winds and Significant Wave Heights Observed Marine Meterological Buoys and Lighthouse AWSs near the Korean Peninsula (한반도 주변해역의 기상부이와 등표에서 관측된 계절별 해상풍과 유의파고 특성)

  • Kang, Yoon-Hee;Seuk, Hyun-Bae;Bang, Jin-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.291-302
    • /
    • 2015
  • The seasonal variations of sea surface winds and significant wave heights were investigated using the data observed from the marine meteorological buoys (nine stations) and Automatic Weather Stations (AWSs) in lighthouse (nine stations) around the Korean Peninsula during 2010~2012. In summer, the prevailing sea surface winds over the East/West Sea and the South Sea were northerly/southerly and easterly/westerly winds due to both of southeast monsoon and the shape of Korean Peninsula. On the other hand, the strong northerly winds has been observed at most stations near Korean marginal seas under northwest monsoon in winter. However, the sea surface winds at some stations (e.g. Galmaeyeo, Haesuseo in the West Sea) have different characteristics due to topographic effects such as island or coastal line. The significant wave heights are the highest in winter and the lowest in summer at most stations. In case of some lighthouse AWSs surrounded by islands (e.g. Haesuseo, Seosudo) or close to coast (e.g. Gangan, Jigwido), very low significant wave heights (below 0.5 m) with low correlations between sea surface wind speeds and significant wave heights were observed.

An Experimental Study on the Estimation Method of Overtopping Discharge at the Rubble Mound Breakwater Using Wave-Overtopping Height (월파고를 이용한 사석경사제의 월파량 산정방법에 관한 실험적 연구)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • Wave overtopping is a significant natural hazard that occurs in coastal areas, primarily driven by high waves, particularly those generated during typhoons, which can cause coastal flooding. The development of residential and commercial areas along the coast, driven by increasing social and economic demands, has led to a concentration of people and assets in these vulnerable areas. This, coupled with long-term sea level rise and an increase in typhoon frequency, has heightened the risk of coastal hazards. Traditionally, the evaluation of wave overtopping volumes has relied on directly measuring the collected volume of water that exceeds the crest height of structures through hydraulic model experiments. These experiments are averaged over a specific measurement period. However, in this study, we propose a new method for estimating individual wave overtopping volumes. We utilize the temporal variation of wave overtopping heights to develop an observation system that can quantitatively assess wave overtopping volumes in actual coastal areas. To test our method, we conducted hydraulic model experiments on rubble mound breakwaters, which are commonly installed along the Korean coast. We introduce wave overtopping discharge coefficients, assuming that the inundation velocity from the structure's crest is the long-wave velocity. We then predict overtopping volumes based on wave overtopping heights and compare and review the results with experimental data. The findings of our study confirm the feasibility of estimating wave overtopping volumes by applying the overtopping discharge coefficients derived in this study to wave overtopping heights.

Runup Characteristics with the Variations of Wave Spectral Shape (파랑 스펙트럼 형상에 따른 처오름 특성)

  • Park, Seung Min;Yoon, Jong Tae;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.381-387
    • /
    • 2014
  • Recently the large-height swell-like waves generated in the eastern coast of South Korea have been observed frequently. The characteristics of the runup and overtopping of the large-height swell-like waves formed in deep water and attack the coast, causing damages to both lives and facilities have been studied. The correlation between spectral shape parameters and significant wave height has been investigated by analyzing long term wave spectrum data. Numerical runup experiments using MIKE21 BW Module were performed with $Q_p$, additional shape parameter, and identified the variations and characteristics of runup heights with respect to the variations of spectral shape.

Gender-Related Differences in the Second Derivative of Photoplethysmogram Waveforms in the Fourth Decade (30대 성인남녀의 성별에 따른 가속도맥파 차이에 관한 연구)

  • 남동현;박연재;박영배
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Objective: There exist gender differences in pulsatile contour waveform. Women have a greater age-related increase in left ventricular mass than do men and more likely to experience symptomatic heart failure after infarction. SDPTG (the second derivative of photoplethysmogram waveform) is a noninvasive method for evaluating the pulse wave and is correlated with age and other risk factors for atherosclerosis. We studied the effect of gender on SDPTG and made clear why the gender differences appear. Methods: To study the effects of effect factors, including height and blood pressure, on SDPTG in the fourth decade, data on height, weight, PTD (pulse transit distance), blood pressure, serum lipid levels, and SDPTG were collected in 115 laboratory healthy men and women. SDPTG is derived from double-differential processing of fingertip photoplethysmography and consists of a, b, c, and d waves in systole and an e wave in diastole; SDPTG aging index (AI) was calculated as (b-c-d-e)/a. Results: There were significant gender-related differences of SDPTG AI, height, and blood pressure. Age, height, and mean blood pressure were respectively and significantly correlated with SDPTG AI. SDPTG is dependent upon age, height, and blood pressure. Restricting analysis to SDPTG AI, age, height, and mean blood pressure, yielded that there were gender-related differences in SDPTG AI (P<0.05) which were derived from those of height (F<0.001, df=l, P=0.994). Conclusions: These new data may help to explain previous findings about age-related differences in pulsatile contour waveforms and why gender differences of SDPTG appear. The results of this study suggest that SDPTG AI, used for evaluation of biological vascular aging, should be calibrated by height as well as age and blood pressure.

  • PDF

A Study on the Roll Motion of a Ship in a Transient Irregular Wave (설계불규칙파중에서 선박의 횡동요에 관한 연구)

  • Han, Ju-Chull;Lee, Seung-Keon;Ha, Tae-Phil
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.353-358
    • /
    • 2004
  • A transient irregular wave was designed based on ISSC spectrum The designed wave was generated in the towing tank and ,the roll motion of a model was measured A method to predict the maximum roll motion, expected in the short-term sea state, was investigated with comparison of the theoretical and experimental results.

An Analysis of Floor Impact Noise by using Wave Model (Wave 모델을 이용한 바닥충격음 해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1417-1420
    • /
    • 2006
  • In this paper, floor impact is studied by using 1-D wave model and predicted insertion loss is compared to the measurements done in the mock-up. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t or 50t panel is used to construct wall and ceiling inside the steel structure. Various floating floor structures are studied, in which mineral wool thickness, height, and stiffness changes are investigated. It is shown that the wave model and measurements are in good agreements in general, although there occur significant discrepancies in the low frequency range below 200 Hz.

  • PDF