• 제목/요약/키워드: Signalling Pathway

검색결과 70건 처리시간 0.03초

Structure and function of chemotactic transducer proteins

  • Park, Chankyu;Ha, L.zelbaure
    • 미생물과산업
    • /
    • 제12권2호
    • /
    • pp.14-18
    • /
    • 1986
  • Barcterial chemotaxis is a transient response of an organism in a situation where environmental homogeneity has been disturbed by certain chemical compounds. The phenomenon has been described in motile bacterial species including enteric bacteria, Gram-positives(14), Spirochaetes (6) and even Archaebacteria (8). However, most comprehensive studies have been done with Escherichia coli and Salmonella typhimurium. Two analogies to higher eucaryotic sensory phenomena are provided by the study of bacterial chemotaxis. First, bacterial chemotaxis is similar to the stimulus-response of neuronal, immune and sperm cells. Second, studies of individual components involved in the bacterial sensory pathway can contribute to the understanding of the function of receptors, controling signals and molecular comparators in transmembrane signalling system. The bacterial sensory transducer, a chemoreceptor in a broad sense, is a unique entity for studying sensory function in which sensory reception, signalling and adaptation are integrated (7,18).

  • PDF

Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B-irradiated hairless mice

  • Saba, Evelyn;Kim, Seung-Hyung;Lee, Yuan Yee;Park, Chae-Kyu;Oh, Jae-Wook;Kim, Tae-Hwan;Kim, Hyun-Kyoung;Roh, Seong-Soo;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.496-505
    • /
    • 2020
  • Background: Panax ginseng is a marvelous herbal remedy for all ailments of body. That may be why it is called Panax, which means "cure for all". Melanin is a pigment that gives color to our skin; however, increased melanin production can lead to tumor formation. Human exposure to ultraviolet B radiation has increased extensively owing to the increased sunlight due to global warming. Consequently, a phenomenon called photoaging has been observed for all skin colors and types. As a result of this phenomenon, a set of enzymes called matrix metalloproteinases, which serve as degradation enzymes for extracellular matrix proteins, mainly collagen, is increased, causing depletion of collagen and resulting in early wrinkle formation. Methods: Therefore, in our study, we used the murine melanoma cell line B16/F10 to study the inhibition of melanogenesis by Korean Red Ginseng (KRG) extract in vitro and HRM-2 hairless mice exposed to artificial ultraviolet B to examine the efficacy of KRG in vivo. We prepared a 3% red ginseng extract cream and evaluated its effects on human skin. Results: Our results demonstrated that KRG induced potent suppression of tyrosinase activity and melanin production in B16/F10 cells; moreover, it reduced the transcription and translation of components involved in the melanin production pathway. In the in vivo experiments, KRG potently suppressed the expression of matrix metalloproteinases, reduced wrinkle formation, and inhibited collagen degradation. On human skin, ginseng cream increased skin resilience and skin moisture and enhanced skin tone. Conclusion: Therefore, we conclude that KRG is an excellent skin whitening and antiaging product.

Role of TGF-β1/SMADs signalling pathway in resveratrol-induced reduction of extracellular matrix deposition by dexamethasone-treated human trabecular meshwork cells

  • Amy Suzana Abu Bakar;Norhafiza Razali;Renu Agarwal;Igor Iezhitsa;Maxim A. Perfilev;Pavel M. Vassiliev
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.345-359
    • /
    • 2024
  • Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM) increases aqueous humour outflow resistance leading to elevation of intraocular pressure (IOP) in primary open-angle glaucoma, which remains the only modifiable risk factor. Resveratrol has been shown to counteract the steroid-induced increase in IOP and increase the TM expression of ECM proteolytic enzymes; however, its effects on the deposition of ECM components by TM and its associated pathways, such as TGF-β-SMAD signalling remain uncertain. This study, therefore, explored the effects of trans-resveratrol on the expression of ECM components, SMAD signalling molecules, plasminogen activator inhibitor-1 and tissue plasminogen activator in dexamethasone-treated human TM cells (HTMCs). We also studied the nature of molecular interaction of trans-resveratrol with SMAD4 domains using ensemble docking. Treatment of HTMCs with 12.5 µM trans-resveratrol downregulated the dexamethasone-induced increase in collagen, fibronectin and α-smooth muscle actin at gene and protein levels through downregulation of TGF-β1, SMAD4, and upregulation of SMAD7. Downregulation of TGF-β1 signalling by trans-resveratrol could be attributed to its effect on the transcriptional activity due to high affinity for the MH2 domain of SMAD4. These effects may contribute to resveratrol's IOP-lowering properties by reducing ECM deposition and enhancing aqueous humour outflow in the TM.

Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits

  • Liu, Zhaohua;Tan, Xiuwen;Wang, Jianying;Jin, Qing;Meng, Xianfeng;Cai, Zhongfeng;Cui, Xukui;Wang, Ke
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1340-1350
    • /
    • 2022
  • Objective: Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods: We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (𝜃π) ratio. Results: The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion: The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.

반하가 천식이 유발된 생쥐 폐조직의 유전자 발현에 미치는 영향 (Effects of Pinelliae Rhizoma on Gene Expression of Lung Tissue from Asthma induced Mice)

  • 이명진;김종한;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.36-51
    • /
    • 2008
  • Objective : This study investigated the effects of PR(Pinelliae Rhizoma) on gene expression of lung tissue resected from asthma induced mice using intra-nasal instillation. Methods : Gene expression levels were measured using a microarray technique, and a functional analysis on these genes was conducted. Results : A total of 3270 genes were up-regulated or down-regulated, 860 genes which were lowered by induction of asthma were restored to those of naive animals, Furthermore hand, 1235 genes were lowered to normal levels, which were elevated by induction of asthma. Most of changed genes were involved in signalling pathways. Genes in which expression levels were restored by oral administration of PR were involved in MAPK pathway, focal adhesion, and regulation of actin cytoskeleton etc. Genes of which expression levels were lowered by oral administration of PR were involved in rhodopsin-like receptor activity, zinc ion binding and ATP binding. These genes were also involved in neuroactive ligand receptor interaction, the JAK-STAT signaling pathway and also the T-cell receptor signaling pathway. Conclusion : These results demonstrate the strong possibility that the mechanisms of PR on asthma are involved in neuroactive ligand receptor interaction pathway or related molecules.

  • PDF

조각자(皂角刺)가 estradiol valerate로 유발된 백서(白鼠)의 다낭성 난소에 미치는 영향 (Effects of Gleditsiae Spina(GS) on the Polycystic Ovary Induced by Estradiol Valerate in Rats)

  • 구희준;조성희
    • 대한한방부인과학회지
    • /
    • 제23권2호
    • /
    • pp.71-84
    • /
    • 2010
  • Purpose: In the theory of traditional medicine, Glenditsia spina(GS) can resolve carbuncle, relive swelling, dispel wind and destroy parasites. This study was designed to investigate the effects of GS on gene expression of ovarian tissue in polycystic ovary syndrome(PCOS) rats. Methods: In this experiment, female rats injected with a single dose of 2 mg estradiol valerate(EV) and GS was given for 5 weeks. The genetic profile for the effects on ovarian tissue in PCOS rats was measured using microarray technique, and the functional analysis on these genes was conducted. Results: 985 genes were increased in control and restored to normal level in GS group. (B), 733 genes were decreased in control group and restored to normal level in GS group. (F). Metabolic pathways related in B group genes were Graft-versus-host disease, Allograft rejection, Autoimmune thyroid disease, Cytokine-cytokine receptor interaction, Small cell lung cancer, Type I diabetes mellitus. Metabolic pathways related in F group genes were Antigen processing and present, Adipocytokine signalling pathway, Focal adhesion, ECM-receptor interaction, Pancreatic cancer, Notch signalling pathway, Tight junction. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as c-Fos, c-Myc, ABL1 related in B group, MAPK8, RASA1, CALR related in F group that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of GS as anti-cancer and anti-hyperplasia drug in PCOS. In addition, the present author also suggests that related mechanisms are involved in suppression of proto-oncogene such as c-Fos, c-Myc and ABL1, and in regulation of cell cycle such as RASA1.

Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

  • Cui, Huanzhong;Wang, Yanrong;Song, Meng;Zhang, Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1508-1514
    • /
    • 2016
  • A series of antagonists specifically targeting growth hormone receptors (GHR) in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH). Therefore, in this study, we developed and characterized a porcine GHR (pGHR) antibody antagonist (denoted by AN98) via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1) secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

Current and Future Molecular Mechanism in Inflammation and Arthritis

  • Sharma, Vikash;Tiwari, Raj Kumar;Shukla, Shiv Shankar;Pandey, Ravindra Kumar
    • 대한약침학회지
    • /
    • 제23권2호
    • /
    • pp.54-61
    • /
    • 2020
  • Inflammation is an immune response of the human body but excessive inflammation is taken as a major factor in the development of many diseases including autoimmune disorders, cancer and nerve disorders etc. In this regards the need is to suppress the inflammatory response. Suppression of extra or imperfect inflammatory response is not a big deal provided there is an exact knowledge of particular target in the body. Recent advancements in Pharmacological aspect made the therapy with improved outcomes in number of patients. Anticytokine therapy might be one of the important and novel approaches for inflammation and Arthritis. This can be achieved only when we go through the pathophysiology of expression and identification of mediators. Let's take an example of cytokine like interleukins (IL), chemokines, interferons (INF), tumor necrosis factors (TNF-α), growth factors, and colony stimulating factors) release pathway which is a major signalling protein in inflammatory response. In the present study we have reviewed the recent pharmacological therapeutic advancement, inflammatory mediators, receptors, and major signalling pathways. Such information will not only provide the idea about the mechanism of action of Pharmaceuticals and molecular targets but also it provides a new aspect for drug designing and new corrective approaches in existing clinical medicines. This study will be a source of good information for the researchers working in the area of drug designing and molecular Pharmacology especially in anti-inflammatory and anti arthritic medicines for target based therapy.

β-Elemene Induces Apoptosis in Human Renal-cell Carcinoma 786-0 Cells through Inhibition of MAPK/ERK and PI3K/Akt/mTOR Signalling Pathways

  • Zhan, Yun-Hong;Liu, Jing;Qu, Xiu-Juan;Hou, Ke-Zuo;Wang, Ke-Feng;Liu, Yun-Peng;Wu, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2739-2744
    • /
    • 2012
  • Background: Renal-cell carcinoma (RCC) is resistant to almost all chemotherapeutics and radiation therapy. ${\beta}$-Elemene, a promising anticancer drug extracted from a traditional Chinese medicine, has been shown to be effective against various tumors. In the present study, anti-tumor effects on RCC cells and the involved mechanisms were investigated. Methods: Human RCC 786-0 cells were treated with different concentrations of ${\beta}$-elemene, and cell viability and apoptosis were measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry, respectively. Protein expression was assayed by western blotting. Autophagy was evaluated by transmission electron microscopy. Results: ${\beta}$-Elemene inhibited the viability of 786-0 cells in a dose- and time-dependent manner. The anti-tumor effect was associated with induction of apoptosis. Further study showed that ${\beta}$-elemene inhibited the MAPK/ERK as well as PI3K/Akt/mTOR signalling pathways. Moreover, robust autophagy was observed in cells treated with ${\beta}$-elemene. Combined treatment of ${\beta}$-elemene with autophagy inhibitors 3-methyladenine or chlorochine significantly enhanced the anti-tumor effects. Conclusions: Our data provide first evidence that ${\beta}$-elemene can inhibit the proliferation of RCC 786-0 cells by inducing apoptosis as well as protective autophagy. The anti-tumor effect was associated with the inhibition of MAPK/ERK and PI3K/Akt/mTOR signalling pathway. Inhibition of autophagy might be a useful way to enhance the anti-tumor effect of ${\beta}$-elemene on 786-0 cells.