• Title/Summary/Keyword: Signaling Transduction

Search Result 299, Processing Time 0.035 seconds

Inter-Domain Signal Transmission within the Phytochromes

  • Song, Pill-Soon
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.215-225
    • /
    • 1999
  • Phytochromes (with gene family members phyA, B, C, D, and E) are a wavelength-dependent light sensor or switch for gene regulation that underscore a number of photo responsive developmental and morphogenic processes in plants. Recently, phytochrome-like pigment proteins have also been discovered in prokaryotes, possibly functioning as an auto-phosphorylating/phosphate-relaying two-component signaling system (Yeh et al., 1997). Phytochromes are photochromically convertible between the light sensing Pr and regulatory active Pfr forms. Red light converts Pr to Pfr, the latter having a "switch-on" conformation. The Pfr form triggers signal transduction pathways to the downstream responses including the expression of photosynthetic and other growth-regulating genes. The components involved in and the molecular mechanisms of the light signal transduction pathways are largely unknown, although G-proteins, protein kinases, and secondary messengers such as $Ca^{2+}$ ions and cGMP are implicated. The 124-127 kDa phytochromes form homodimeric structures. The N-terminal half contains the tetrapyrrolic phytochromobilin for red/far-red light absorption. The C-terminal half includes both a dimerization motif and regulatory box where the red light signal perceived by the chromophore-domain is recognized and transduced to initiate the signal transduction cascade. A working model for the inter-domain signal communication within the phytochrome molecule is proposed in this Review.

  • PDF

Mechanisms of Type-I Interferon Signal Transduction

  • Uddin, Shahab;Platanias, Leonidas C.
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.635-641
    • /
    • 2004
  • Interferons regulate a number of biological functions including control of cell proliferation, generation of antiviral activities and immumodulation in human cells. Studies by several investigators have identified a number of cellular signaling cascades that are activated during engagement of interferon receptors. The activation of multiple signaling cascades by the interferon receptors appears to be critical for the generation of interferon mediated biological functions and immune surveillance. The present review summarizes the existing knowledge on the multiple signaling cascades activated by Type I interferons. Recent developments in this research area are emphasized and the implications of these new discoveries on our understanding of interferon actions are discussed.

Translocation of Annexin I to the Nucleus by Epidermal Growth Factor in A549 Cells

  • Rhee, Hae-Jin;Kim, Seung-Wook;Soo-Ok, Lee;Park, Young-Min;Na, Doe-Sun
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.28-32
    • /
    • 1999
  • Annexin I (also called lipocortin 1), a 37-kDa member of the annexin family of proteins, has been implicated in the mitogenic signal transduction by epidermal growth factor (EGF). Annexin I is phosphorylated by the EGF signal, however, the role of annexin I in the EGF signal transduction is still unknown. To transduce extracellular signals into the intracellular targets, selective translocation of the signaling molecules to their targets would be necessary. In this study, we examined the subcellular locations of annexin I during EGF signal transduction. Treatment of A549 cells with EGF resulted in the translocation of cytoplasmic annexin I to the nucleus and perinuclear region as determined by Western blot and immunofluorescent staining. The nuclear translocation of annexin I was inhibited by tyrphostin AG 1478 and genistein, the inhibitors of EGF receptor kinase and downstream tyrosine kineses, respectively. Pretreatment of cells with cyclohexamide did not inhibit the nuclear translocation. The results suggest that nuclear translocation of annexin I is controlled by a series of kinase dependent events in the EGF receptor signaling pathway and may be important in tranducing the signals by EGF.

  • PDF

Signal Transduction of the Cytokine Receptor

  • Watanabe, Sumiko
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 1998
  • Cytokines regulate proliferation, differentiation and functions of haemotopoietic cells. Each cytokine possesses a variety of activities on various target cells (pleiotropy) and various cytokines have similar and overlapping activities on the same target cells (redundancy). The nature of these cytokine activities predicts unique feature of cytokine receptors, namely, cytokine has multiple receptors, different cytokines share a common receptor, and different cytokine receptors are linked to common signaling pathways. cDNA cloning of genes for cytokine receptors revealed distinct sets of receptor family with different structural features. The cytokine receptor superfamily consists of a largest family, and contains more than twenty cytokine receptor subunits. This receptor has common structural features in both extracellular and intracellular regions without tyrosine kinase domain. Another striking feature of the receptor is to share common subunit of multiple cytokines, which partly explains the redundancy of activities of some cytokines. Recent studies revealed detailed signaling events of the cytokine receptor, the primary activation of JAK and subsequent phosphorylation of tyrosine residues of receptor, and various cellular proteins. Many SH2 containing adapter proteins play an important role in cytokine signals, and this system has similarities with tyrosine kinase receptor signal transduction. STAT may mainly account for cytokine specific functions as suggested by knockout mice studies. It is of importance to note that cytokine activates multiple signaling pathways and the balance and combination of related signaling events may determine the specificity of functions of cytokines.

  • PDF

Current Status of Research in Wnt Signal Transduction (Wnt 신호 전달 연구의 최신 지견)

  • Kim, Wan-Tae;Cha, Bok-Sik;Jho, Eek-Hoon
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.141-153
    • /
    • 2007
  • The Wnt signaling pathway regulates cell proliferation and differentiation during development of multicellular organisms and plays pivotal roles in the maintenance of homeostasis in adult tissues. Therefore misregulation of Wnt signaling could be a pathogenesis of diverse human diseases such as cancers. Recently, the list of diseases that may be linked to the misregulation of Wnt signaling has exploded and more people are getting interested in the way of controlling Wnt signaling. There are a lot of review papers, however, since most of them have focused on specific issues for experts in Wnt signaling it may be difficult for new comers to understand the overall background and current status of Wnt signaling. In this review, we present data and interpretations for the overall processes of Wnt signal transduction to understand the past and current status of Wnt signaling.

  • PDF

Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

  • Park, Young-Hoon;Jeong, Mi Suk;Jang, Se Bok
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.159-166
    • /
    • 2016
  • Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer.

In silico analysis of candidate genes involved in light sensing and signal transduction pathways in soybean

  • Quecini, V.;Zucchi, M.I.;Pinheiro, J.B.;Vello, N.A.
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.59-73
    • /
    • 2008
  • Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag (EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis genefamily homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.

Dual roles of estrogen metabolism in mammary carcinogenesis

  • Chang, Min-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.423-434
    • /
    • 2011
  • A female hormone, estrogen, is linked to breast cancer incidence. Estrogens undergo phase I and II metabolism by which they are biotransformed into genotoxic catechol estrogen metabolites and conjugate metabolites are produced for excretion or accumulation. The molecular mechanisms underlying estrogen-mediated mammary carcinogenesis remain unclear. Cell proliferation through activation of estrogen receptor (ER) by its agonist ligands and is clearly considered as one of carcinogenic mechanisms. Recent studies have proposed that reactive oxygen species generated from estrogen or estrogen metabolites are attributed to genotoxic effects and signal transduction through influencing redox sensitive transcription factors resulting in cell transformation, cell cycle, migration, and invasion of the breast cancer. Conjuguation metabolic pathway is thought to protect cells from genotoxic and cytotoxic effects by catechol estrogen metabolites. However, methoxylated catechol estrogens have been shown to induce ER-mediated signaling pathways, implying that conjugation is not a simply detoxification pathway. Dual action of catechol estrogen metabolites in mammary carcinogenesis as the ER-signaling molecules and chemical carcinogen will be discussed in this review.