• Title/Summary/Keyword: Signaling Effect

Search Result 1,576, Processing Time 0.036 seconds

THE EFFECT OF FGF-MEDIATED FGFR SIGNALING ON THE EARLY MORPHOGENESIS AND MAINTENANCE OF THE CRANIAL SUTURE (FGF-mediated FGFR signaling이 두개봉합부의 초기형태발생 및 유지기전에 미치는 영향)

  • Sue, Kyung-Hwan;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.652-663
    • /
    • 1999
  • Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of the interactions between different tissues within the cranial sutures. Interestingly, point mutaions in the genes encoding for the fibroblast growth factor receptors(FGFRs), especially FGFR2, cause various types of human craniosynostosis syndromes. To elucidate the function of these genes in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of FGFR2(BEK) and osteopontin, an early marker of osteogenic differentiation, in the sagittal suture of calvaria during embryonic(E15-E18) and postnatal stage(P1-P3). FGFR2(BEK) was intensely expressed in the osteogenic fronts, whose cells undergo differentiation into osteoprogenitor cells that ultimately lay down the bone matrix. Osteopontin was expressed throughout the parietal bones excluding the osteogenic fronts, the periphery of the parietal bones. To further examine the role of FGF-mediated FGFR signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of FGF2 soaked beads onto both the osteogenic fronts and mid-mesenchyme of sagittal suture after 36 hours organ culture resulted in the increase of the tissue thickness and cell number around FGF2 beads, moreover FGF4-soaked beads implanted onto the osteogenic fronts stimulated suture closure due to an accelerated bone growth, compared to FGF4 beads placed onto mid-mesenchyme of sagittal suture and BSA control beads. In addition FGF2 induced the ectopic expression of osteopontin and Msx1 genes. Taken together, these data indicate that FGF-mediated FGFR signaling has a important role in regulating the cranial bone growth and maintenance of cranial suture, and suggest that FGF-mediated FGFR signaling is involved in regulating the balance between the cell proliferation and differentiation through inducing the expression of osteopontin and Msx1 genes.

  • PDF

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.168-175
    • /
    • 2000
  • Relatively little is known about the signaling mechanism of ginseng saponins (ginsenosides), active ingredients of ginseng, in non-neuronal cells. Here, we describe that ginsenosides utilize a common pathway of receptor-mediated signaling pathway in Xenopus oocytes: increase in intracellular $Ca^{2+}$ concentration via phospholipase C (PLC) and $Ca^{2+}$ mobilization. Ginsenosides induced a marked and robust artivation of $Ca^{2+}$-activated Cl- channels in Xenopus oocytes. The effect of ginsenosides was completely reversible, in a dose-dependent manner with EC$_{50}$ of 4.4 $\mu\textrm{g}$/mi, and specifically blocked by niflumic acid, an inhibitor of $Ca^{2+}$-activated Cl- channel. Intracellular injection of BAPIA abolished the effect of ginsenosides. Intracellular injection of GTP${\gamma}$S also abolished the effect of ginsenosides. The effect of gin senosides on $Ca^{2+}$-activated Cl- currents was greatly reduced by the intracellular injection of heparin, an IP$_3$ receptorantagonist or the pretreatment of PLC inhibitor. These results indicate that ginsenosides activate endogenous $Ca^{2+}$-activated Cl- channels via the activation of PLC and the release of $Ca^{2+}$ from the IP$_3$-sensitive intracellular store following the initial interaction with membrane component(s) from extracellular side. This signaling pathway of ginsenosides may be one of the action mechanisms for the pharmacological effects of ginseng.ts of ginseng.

  • PDF

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

The Signaling Effect of Government R&D Subsidies on Inducing Venture Capital Funding (스타트업 대상 정부 R&D 지원금의 벤처 투자 유도 효과)

  • Hong, Seulki;Bae, Sung Joo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.6
    • /
    • pp.39-50
    • /
    • 2022
  • Based on the signaling theory, this study examined whether startups are more likely to attract venture investment when receiving government R&D subsidies. First, we reviewed previous studies of the investment decision-making process of venture capitalists and understood the conditions that influence investment decisions. Based on previous studies on the signal effect of government subsidies, particularly government R&D grants, on inducing private fund investment, this study revealed a mechanism to induce venture investment by startups. In addition, in order to verify whether government R&D subsidies have the effect of inducing venture investment, an empirical analysis was conducted based on data from startups under seven years and certified as a venture companies in 2021. This paper used PSM(Propensity Score Matching) method and DID(Difference In Difference) analysis for an empirical study to analyze the average treatment effect on the treated group(beneficiary startups of government R&D grants). As a result of empirical analysis, companies that receive more government R&D subsidies after starting a business are more likely to attract venture investment. From two to three years after conducting the first government R&D project, startups that received government R&D grants attracted more venture investment than those that did not. The results of this paper demonstrate that government R&D projects can also affect the venture investment ecosystem, giving policy implications to government R&D projects targeting startups. It is also expected to suggest strategic implications to startups that need new funding.

ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification (식물의 앱시스산 신호 전달 기작: 앱시스산 수송, 인식, 신호 전달 및 번역 후 변형 과정에 관하여)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.196-208
    • /
    • 2014
  • During the life cycle of plants, water deficit leads to an adverse effect on its growth and development. To increase the productivity of crops, overcoming such drought stress is one of the most important issues in the field of plant study. Among plant hormones, the phytohormone, abscisic acid (ABA) plays a crucial role in eliciting resistance to drought stress as well as in multiple developmental processes, such as seed germination, stomatal closure, and seedling growth. Therefore, further understanding of the ABA-mediated signal transduction pathway in plants is an effective strategy to generate drought-tolerant plants. Posttranslational modification, such as phosphorylation and ubiquitination, is an efficient mechanism for plants to acquire quick adaptation against environmental stress conditions since this process directly affects pre-existing signaling components by modulating protein activity and stability. Here, recent reports on ABA signaling are reviewed, especially focusing on ABA transport, perception, signaling, and posttranslational modification in ABA-mediated cellular responses. Also, we present future prospects on how the control of such a mechanism can be applied to generate useful agricultural crops.

A Carbohydrate Fraction, AIP1, from Artemisia Iwayomogi Reduces the Action Potential Duration by Activation of Rapidly Activating Delayed Rectifier $K^+$ Channels in Rabbit Ventricular Myocytes

  • Park, Won-Sun;Son, Youn-Kyoung;Ko, Eun-A;Choi, Seong-Woo;Kim, Na-Ri;Choi, Tae-Hoon;Youn, Hyun-Joo;Jo, Su-Hyun;Hong, Da-Hye;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.119-125
    • /
    • 2010
  • We investigated the effects of a hot-water extract of Artemisia iwayomogi, a plant belonging to family Compositae, on cardiac ventricular delayed rectifier $K^+$ current ($I_K$) using the patch clamp technique. The carbohydrate fraction AIP1 dose-dependently increased the heart rate with an apparent $EC_{50}$ value of $56.1{\pm}5.5\;{\mu}g/ml$. Application of AIP1 reduced the action potential duration (APD) in concentration-dependent fashion by activating $I_K$ without significantly altering the resting membrane potential ($IC_{50}$ value of $APD_{50}$: $54.80{\pm}2.24$, $IC_{50}$ value of $APD_{90}$: $57.45{\pm}3.47\;{\mu}g/ml$). Based on the results, all experiments were performed with $50\;{\mu}g/ml$ of AIP1. Pre-treatment with the rapidly activating delayed rectifier $K^+$ current ($I_{Kr}$) inhibitor, E-4031 prolonged APD. However, additional application of AIP1 did not reduce APD. The inhibition of slowly activating delayed rectifier $K^+$ current ($I_{Ks}$) by chromanol 293B did not change the effect of AIP1. AIP1 did not significantly affect coronary arterial tone or ion channels, even at the highest concentration of AIP1. In summary, AIP1 reduces APD by activating $I_{Kr}$ but not $I_{Ks}$. These results suggest that the natural product AIP1 may provide an adjunctive therapy of long QT syndrome.

Baicalin Induces Apoptosis in Leukemia HL-60/ADR Cells via Possible Down-regulation of the PI3K/Akt Signaling Pathway

  • Zheng, Jing;Hu, Jian-Da;Chen, Ying-Yu;Chen, Bu-Yuan;Huang, Yi;Zheng, Zhi Hong;Liu, Ting-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1119-1124
    • /
    • 2012
  • Background: The effect and possible mechanism of traditional Chinese medicine, baicalin, on the PI3K/Akt signaling pathway in drug-resistant human myeloid leukemia HL-60/ADR cells have been investigated in this current study. Methods: HL-60/ADR cells were treated by 20, 40, $80\;{\mu}mol/L$ baicalin followed by cell cycle analysis at 24h. The mRNA expression level of the apoptosis related gene, Bcl-2 and bad, were measured by RT-PCR on cells treated with $80\;{\mu}mol/L$ baicalin at 12, 24 and 48hr. Western blot was performed to detect the changes in the expression of the proteins related to HL-60/ADR cell apoptosis and the signaling pathway before and after baicalin treatment, including Bcl-2, PARP, Bad, Caspase 3, Akt, p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR. Results: Sub-G1 peak of HL-60/ADR cells appeared 24 h after $20\;{\mu}mol/L$ baicalin treatment, and the ratio increased as baicalin concentration increased. Cell cycle analysis showed 44.9% G0/G1 phase cells 24 h after baicalin treatment compared to 39.6% in the control group. Cells treated with $80\;{\mu}mol/L$ baicalin displayed a trend in decreasing of Bcl-2 mRNA expression over time. Expression level of the Bcl-2 and PARP proteins decreased significantly while that of the PARP, Caspase-3, and Bad proteins gradually increased. No significant difference in Akt expression was observed between treated and the control groups. However, the expression levels of p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR decreased significantly in a time-dependent manner. Conclusions: We conclude that baicalin may induce HL-60/ADR cell apoptosis through the PI3K/AKT signaling pathway.

Quercetin Sensitizes Human Leukemic Cells to TRAIL-induced Apoptosis: Involvement of DNA-PK/Akt Signal Transduction Pathway (Quercetin 에 의한 사람백혈병 세포의 TRAIL 에 대한 감수성 증가: DNA-PK/Akt 신호전달경로의 관여)

  • Park, Jun-Ik ;Kim, Mi-Ju;Kim, Hak-Bong;Bae, Jae-Ho;Lee, Jea-Won;Park, Soo-Jung;Kim, Dong-Wan;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1023-1032
    • /
    • 2009
  • Despite the fact that many cancer cells are sensitive to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, some cancer cells show either partial or complete resistance to TRAIL. Human leukemic K562 and CEM cells also show resistance to TRAIL-induced apoptosis. Novel molecular target and treatment strategies are required to overcome TRAIL resistance of human leukemia cells. Therefore, the purpose of this study was to target key anti-apoptotic molecules deciding TRAIL resistance for sensitization of TRAIL-resistant K562 and CEM cells, and to evaluate the effect of quercetin as a TRAIL sensitizer on these TRAIL-resistant cells. We found that quercetin acted in synergy with TRAIL to enhance TRAIL-induced apoptosis in K562 cells by inhibition of the DNA-PK/Akt signaling pathway, which leads to enhancement of TRAIL-mediated activation of caspases and concurrent cleavage of PARP and up-regulation of Bax. The findings suggest that the DNA-PK/Akt signaling pathway plays an essential role in regulating cells to escape from TRAIL-induced apoptosis, and quercetin could act in synergy with TRAIL to increase apoptosis by inhibition of the DNA-PK/Akt signaling pathway, which overcomes TRAIL-resistance of K562 and CEM cells. This study suggests that DNA-PK might interfere with TRAIL-induced apoptosis in human leukemic cells through activation of the Akt signaling pathway.

Performance Analysis of Multicarrier CDMA System with M-ar Orthogonal Signaling in Multipath Fading Channel (다중 경로 페이딩 채널에서 M 진 직교 신호화를 적용한 다중 반송파 CDMA 시스템의 성능 분석)

  • Park, Kyoung-Suk;Kim, Hang-Rae;Kim, Nam;Park, Sung-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.391-400
    • /
    • 2001
  • In this paper, the performance of a multicarrier CDMA system applying M-ary orthogonal signaling and adaptive subchannel allocation scheme is analyzed for forward links in Rayleigh fading channel. Also, the effect of error caused by subchannel allocation is analyzed. In the proposed system, each DS waveform is transmitted over the subchannel having the biggest fading among L subchannels. Considering M-ary orthogonal signaling and 4 subchannels, the BER of $10^{-3}$ is satisfied if SNRs are 7.33 dB, 5.33 dB, and 4.47 dB for k = 1, 2, and 3, respectively. Therefore, SNR is decreased as k is increased. If the error of subchannels exists, the BER of $10^{-3}$ is met if SNR is 8.18 dB in the absence of M-ary orthogonal signaling. So, a required SNR is declined about 0.85 dB. Adding the M-ary orthogonal signaling with k = 4, it is observed that the multicarrier CDMA system has performance improvement because a required SNR is 5.44 dB.

  • PDF

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.