• Title/Summary/Keyword: Signal-interference-and-noise Ratio

Search Result 449, Processing Time 0.026 seconds

Phase Tracking for Orthogonal Frequency Division Multiplexing Systems (직교 주파수 분할 다중화 시스템을 위한 위상 오차 추적)

  • Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.61-67
    • /
    • 2006
  • This paper proposes the algorithm for tracking of the residual phase errors incurred by carrier frequency offset and sampling frequency offset in the orthogonal frequency division multiplexing (OFDM) systems which are suitable for high data rate wireless communications. In the OFDM systems the subcarriers which are orthogonal to each other are modulated by digital data and transmitted simultaneously. The carrier frequency offset causes degradation of signal to noise ratio(SNR) performance and interference between the adjacent subcarriers. The errors in the sampling timing caused by the sampling frequency difference between the transmitter and the receiver sides also cause a major performance degradation in the OFDM systems. The residual error tracking and compensation mechanism is essential in the OFDM system since the carrier and the sampling frequency offset cause the loss of orthogonality resulting in the system performance loss. This paper proposes the scheme where the channel gain and the payload data information are reflected in the residual error tracking process which results in the reduction of the estimation error and the tracking performance improvements under the frequency selective fading wireless channels.

Performance Analysis of Projection Statistics through Method of Clutter Covariance Matrix Estimation for STAP (STAP를 위한 간섭 공분산 행렬의 예측 방법에 따른 Projection Statistics의 성능 분석)

  • Kang, Sung-Yong;Kim, Kyung-Soo;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • We analyze the performance of various techniques to overcome degradation of performance of STAP caused by nonhomogeneous clutter. The performance of NHD that used to eliminate outliers from nonhomogeneous clutter is improved by using the projection statistics(PS) that is robust to multiple outliers. The method of clutter covariance matrix estimation using a median value and the conventional method are also investigated and then compared. From the simulation results of STAP, the method of clutter covariance matrix estimation using a median value shows better performance than the conventional method for the calculation of the SINR loss, and MSMI for the single target and the multiple targets regardless of the NHD methods.

Hybrid Scheduling in Millimeter Wave Full-Duplex Systems (밀리미터파 전 이중 시스템에서의 혼성 스케줄링)

  • Mai, Vien V.;Kim, Juyeop;Choi, Sang Won;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • We introduce a hybrid scheduling in a multi-path poor scattering full-duplex (FD) system, which consists of one multi-antenna FD base station and a large number of single-antenna half-duplex mobile stations. Our hybrid scheduling utilizes partial channel state information at the transmitter. In particular, unlike the conventional scheduling method using opportunistic transmission for both uplink and downlink, the proposed scheme combines a random transmit beamforming for downlink and a zero forcing beamforming for uplink. As our main result, via computer simulations, it is shown that the proposed scheme has a superior sum-rate performance than that of the conventional scheduling method beyond a certain signal-to-noise ratio regime.

Performance of Multiple-Relay Cooperative Communication Networks under Soft-Decision-and-Forward Protocol (연판정 후 전송 방식을 적용한 다중 안테나 다중 릴레이 협동통신망의 성능 분석)

  • Song, Kyoung-Young;No, Jong-Seon;Kim, Tae-Guen;Sung, Joon-Hyun;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.431-439
    • /
    • 2010
  • In this paper, multiple-relay cooperative communication network with multiple antennas is considered. Applying the soft-decision-and-forward protocol to this system, pairwise error probability(PEP) is derived and then symbol error rate(SER) is also calculated. However, in general, signals are transmitted through the orthogonal channel in the multiple-relay cooperative communication network for the prevention of interference, which is inefficient in terms of the throughput. For the improvement of throughput, the relay selection is considered, where the relay having the maximum instantaneous end-to-end signal-to-noise ratio is chosen. Performance of the system is analyzed in terms of PEP and SER. As the number of the relay increases, relay selection method outperforms the conventional multiple-relay transmission system where all relays participate in the second time slot.

Load-Aware Cell Selection Method for Efficient Use of Network Resources (효율적 망 자원 이용을 위한 부하 인지 셀 선택 기법)

  • Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2443-2449
    • /
    • 2015
  • Downlink (DL) data rate for a MS is influenced by not only the signal to interference and noise ratio (SINR) but also the amount of radio resources allocated to the MS. Therefore, when a MS uses SINR to select a cell to associate with, it cannot receive the fastest DL data rate all the time if it associates with a congested cell. Moreover, the SINR-based cell selection may result in cell loads unbalance, which decreases the efficiency of a network. To address the issue, we propose a novel cell selection method by considering not only SINR but also a cell load which are combined into two cell selection criteria. One is the maximum achievable data rate and the other is the minimum outage probability. The simulation results show that the cell selection based on the maximum achievable data rate is superior to the SINR-based method and the method using the minimum outage probability in terms of the system efficiency and the fairness in cell loads while the cell selection method based on the minimum outage probability is superior to the others in terms of the outage probability of a MS.

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Performance Analysis of Asynchronous OFDMA Uplink Systems with Timing Misalignments over Frequency-selective Fading Channels (주파수 선택적 페이딩 채널에서 시간오차에 의한 비동기 OFDMA 상향 시스템의 성능 분석)

  • Park, Myong-Hee;Ko, Kyun-Byoung;Park, Byung-Joon;Lee, Young-Il;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.34-42
    • /
    • 2005
  • In orthogonal frequency-division multiple access (OFDMA) uplink environments, asynchronously received signals can cause multiple access interference (MAI). This paper focuses on the performance degradation due to the MAI over frequency-selective fading channels. We first introduce the timing misalignment, which is defined as the relative timing difference between asynchronous timing error of uplink user and reference time of the base station, and analytically derive the MAI using the power delay profile of wide-sense stationary uncorrelated scattering (WSSUS) channel model. Then, the effective signal-to-noise ratio (SNR) and the average symbol error probability (SEP) are derived. The proposed analytical results are verified through simulations with respect to the region of the timing misalignment and the number of asynchronous users.

Efficient Cognitive and Cooperative Communication Scheme for Multiuser OFDMA Systems using Relays (중계기를 사용하는 다중 사용자 OFDMA 시스템을 위한 효율적인 인지 협력 통신 기법)

  • Kang, Min-Gyu;Sang, Young-Jin;Ko, Byung-Hoon;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we investigate the cognitive and cooperative communication scheme to improve the spectral efficiency in multiuser OFDMA systems using wireless relays. First, we propose the frame structure in which the efficient frequency reuse scheme with the cognitive technique is performed to increase the system throughput. And in the case where the THP (Tomlinson-Harashima preceding) is used for the elimination of interference from the relay, we derive the effective signal to noise ratio of the link largely affected by the channel quantization error. From the system level simulation results, it is shown that the proposed cognitive and cooperative communication scheme increases the overall system performance including the feedback overhead.

Beamforming Matrix Transformation and User Scheduling for MIMO Systems (다중 안테나 빔형성 메트릭스 변환 기법 및 사용자 선택 기법)

  • Park, Jong-Rok;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.25-33
    • /
    • 2012
  • Random beamforming (RBF) uses the signal to interference plus noise ratio (SINR) feedback to select users in multiple-input multiple-output (MIMO) systems. A large number of users are required to obtain the gain of multi-user diversity for a downlink transmission. However, if the number is not large enough, it may be difficult to obtain multi-user diversity, leading to a rapid degradation in performance. To resolve this problem, we propose the beamforming matrix transformation and the user scheduling method. The beamforming matrix transformation scheme uses the SINRs of each users and have a better performance than conventional schemes over a small number of users. In addition, we propose the user scheduling scheme corresponding to the beamforming matrix transformation. In simulation results, we demonstrate that the sum-rate can be improved according to the number of users.

Performance Analysis of Fractional Bandwidth Mode Detection for a Cognitive Radio Based OFDM System (인지 라디오 기반 OFDM 시스템을 위한 부분대역모드 검출 기법의 성능 분석)

  • Lee, Ji-Hye;Wang, Jin-Soo;Kim, Yun-Hee;Yoon, Seok-Ho;Song, Lick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.238-245
    • /
    • 2010
  • For orthogonal frequency division multiplexing (OFDM) systems sharing the spectrum with narrow band primary devices, a fractional bandwidth (FBW) mode has been proposed recently to reduce the interference to the primary users. The FBW mode divides the total OFDM bandwidth into subbands and activates (or deactivates) a subset of the subbands according to the result of spectrum sensing. In this paper, we analyze the detection error probability of FBW mode information which is delivered by the sequence embedded in the preamble and evaluate the performance in wireless regional area network environments. The results show that the detection probability derived analytically estimates the actual value from simulation adequately and that a low detection error probability less than $10^{-3}$ is obtained at a low signal-to-noise power ratio.