• 제목/요약/키워드: Signal transduction cascade

검색결과 24건 처리시간 0.03초

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

형질전환시킨 갈퀴꼭두서니 세포의 색소생합성에 미치는 수종의 신호전달 cascade 관련물질의 효과 (Effects of compounds related to signal transduction on anthraquinone biosynthesis in transformed cells of Rubia cordifolia var. pratensis)

  • 류리;신승원
    • 생약학회지
    • /
    • 제31권2호
    • /
    • pp.235-239
    • /
    • 2000
  • The effects of several compounds related to signal transduction cascade were determined to induce the production of alizarin and purpurin in the hairy root culture system of Rubia cordifolia var. pratensis. It was found that out of five tested compounds jasmonic acid(1 mg/l) and methyl jasmonate(1 mg/l) stimulated strongly the biosynthesis of the pigments while linolenic acid(1 mg/l) induced no significant increase of the product. Yeast extract(600 mg/l) and arachidonic acid(1 mg/l) showed relatively mild inducing effects on production of alizarin. The effects of jasmonic acid and methyl jasmonate were reduced by treatment with cycloheximide(2.8 mg/l).

  • PDF

Plant Light Signaling Mediated by Phytochromes and Plant Biotechnology

  • Song, Pill-Soon
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.83-96
    • /
    • 1998
  • The plant pigment proteins phytochromes are a molecular light sensor or switch for photomorphogenesis involving a variety of growth and developmental responses of plants to red and far-red wavelength light. Underscoring the photomorphogenesis mediated by phytochromes is the light signal transduction at molecular and cellular levels. For example, a number of genes activated by the phytochrome-mediated signal transduction cascade have been identified and characterized, especially in Arabidopsis thaliana. The light sensor/switch function of phytochromes are based on photochromism of the covalently linked tetrapyrrole chromophore between the two photoreversible forms, Pr and Pfr. The photochromism of phytochromes involves photoisomerization of the tetrapyrrole chromophore. The "photosensor" Pr-form ("switch off" conformation) of phytochromes strongly absorbs 660 nm red light, whereas the "switch on" Pfr-conformation preferentially absorbs 730 nm far-red light. The latter is generally considered to be responsible for eliciting transduction cascades of the red light signal for various responses of plants to red light including positive or negative expression of light-responsive genes in plant nuclei and chloroplasts. In this paper, we discuss the structure-function of phytochromes in plant growth and development, with a few examples of biotechnological implications.

  • PDF

Inter-Domain Signal Transmission within the Phytochromes

  • Song, Pill-Soon
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.215-225
    • /
    • 1999
  • Phytochromes (with gene family members phyA, B, C, D, and E) are a wavelength-dependent light sensor or switch for gene regulation that underscore a number of photo responsive developmental and morphogenic processes in plants. Recently, phytochrome-like pigment proteins have also been discovered in prokaryotes, possibly functioning as an auto-phosphorylating/phosphate-relaying two-component signaling system (Yeh et al., 1997). Phytochromes are photochromically convertible between the light sensing Pr and regulatory active Pfr forms. Red light converts Pr to Pfr, the latter having a "switch-on" conformation. The Pfr form triggers signal transduction pathways to the downstream responses including the expression of photosynthetic and other growth-regulating genes. The components involved in and the molecular mechanisms of the light signal transduction pathways are largely unknown, although G-proteins, protein kinases, and secondary messengers such as $Ca^{2+}$ ions and cGMP are implicated. The 124-127 kDa phytochromes form homodimeric structures. The N-terminal half contains the tetrapyrrolic phytochromobilin for red/far-red light absorption. The C-terminal half includes both a dimerization motif and regulatory box where the red light signal perceived by the chromophore-domain is recognized and transduced to initiate the signal transduction cascade. A working model for the inter-domain signal communication within the phytochrome molecule is proposed in this Review.

  • PDF

식물의 고염 스트레스에 대한 반응 및 적응기작 (Molecular Mechanism of Plant Adaption to High Salinity)

  • 윤대진
    • Journal of Plant Biotechnology
    • /
    • 제32권1호
    • /
    • pp.1-14
    • /
    • 2005
  • Plant responses to salinity stress is critical in determining the growth and development. Therefore, adaptability of plant to salinity stress is directly related with agriculture productivity. Salt adaptation is a result of the integrated functioning of numerous determinants that are regulated coordinately through an appropriate responsive signal transduction cascade. The cascade perceives the saline environment and exerts control over the essential mechanisms that are responsible for ion homeostasis and osmotic adjustment. Although little is known about the component elements of salt stress perception and the signaling cascade(s) in plant, the use of Arabidopsis plant as a molecular genetic tool has been provided important molecular nature of salt tolerance effectors and regulatory pathways. In this review, I summarize recent advances in understanding the molecular mechanisms of salt adaptation.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

A two-component sensor kinase (GacS) mediated signal transduction pathway involved in production of antifungal compounds in Pseudomonas chlororaphis O6.

  • Kang, Beom-Ryong;Lee, Jung-Hoon;Kim, Hyun-Jung;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.99.1-100
    • /
    • 2003
  • E. intermedium Blocontrol activity of a P. chlororaphis rhizobacteium O6, depends to the synthesis of extracellular secondary metabolites and exoenzymes, thought to antagonize the pathogenicity of a variety of phytopathogenic fungi. The production of secondary metabolites and exoenzymes in O6, depends essentially on the GacS-mediated signal transduction pathway, which activates largely unknown signal transduction pathway. To exploit the GacS-mediated signal transdcution pathway involved in activation of ph genes that are necessary for biosynthesis of phenazine from P. chlororaphis O6, we cloned and sequenced the phz operon, rpoS gene encoding stationary specific sigma factor, ppx gene encoding polyphosphatase, and lon gene encoding ion protease. Expression of each gene in wild type and GacS mutant were analyzed by RT-PCR. Transcripts from rpoS, phzI enconing acylhomoserine lactone (AHL) synthase, and ph structural genes in the GacS mutant were reduced in each of these growth phases compared to the wild type. The GacS or Lon mutant was found to be deficient in the production of phenzines, exoenzymes, and the acylhomoserine lactone. These mutants were not complemented by ph operon and addition of exogenous AHL. These results indicate that the GacS global regulatory systems controls phenazine production at multiple levels. Future research will focus to identifying the GacS-mediated regulatory cascade involving in production of phenazine in P. chlororaphis.

  • PDF

A Possible Significance in Vertebrate Phototransduction of Multi-Protein Signaling Complexes on Raft-Like Membranes

  • Hayashi, Fumio;Liu, Han;Seno, Keiji
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.47-50
    • /
    • 2002
  • Raft is a distinctive membrane domain enriched in a certain class of lipids, cholesterol, and proteins observed on the plasma membrane. Growing evidence has revealed that such membrane domains play key roles in signal transduction, fertilization, development, transmitter release, and so on. Recently, we have isolated raft-like detergent-resistant membrane (DRM) fraction from bovine photoreceptor rod outer segments. Transducin and its effecter, cGMP-phosphodiesterase, elicited stimulus-dependent translocation between detergent-soluble membrane and DRM. This suggested potential importance of such distinct membrane domains in vertebrate phototransduction. Here, we will discuss physiological meaning of the translocation of major components of cGMP cascade to raft-like membrane in phototransduction. We would like to propose a hypothesis that raft-like membrane domains on the disk membrane are the place where cGMP cascade system could be quenched.

  • PDF

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

우울증의 신경생물학 (Neurobiology of Depression)

  • 김영훈;이상경;이정구;김정익
    • 생물정신의학
    • /
    • 제6권1호
    • /
    • pp.3-11
    • /
    • 1999
  • At the beginning, researches on the biology of depression or affective illness have focused mainly on the receptor functions and neuroendocrine activities. And the studies of the past years did not break new theoretical background, but the recent advances in the research on the molecular mechanisms underlying neural communication and signal transduction do add some insights to many established ideas. This article will overview some of the more recent advances in the clinical researches of depression. Our major concerns to be presented here include the followings : (1) alterations in the post-synaptic neural transduction ; (2) changes in the neurons of hypothalamic neuropeptides ; (3) decreased peptidase enzyme activities ; (4) associations of hypothalamic-pituitary-adrenal axis abnormalities with serotonin neurotransmission ; (5) role of serotonin transporter ; (6) changes in the responsiveness of intracellular calcium ion levels ; (7) the inositol deficiency theory of lithium and depression ; (8) the transcription factors including immediate early genes ; (9) recent genetic studies in some families. This brief overview will suggest that changes in DNA occur during antidepressant therapy. These changes at the DNA level initiating a cascade of events underlying antidepressant modality will give us the insights on the molecular biological basis of the pathogenesis of depression and cues for a new class of antidepressants.

  • PDF