• Title/Summary/Keyword: Signal to Noise

Search Result 6,373, Processing Time 0.035 seconds

A Study on Weighted Filters using Expansion Mask in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 확장 마스크를 이용한 가중치 필터에 관한 연구)

  • Hong, Sang-Woo;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.671-673
    • /
    • 2016
  • In image data, noise occurs due to various external factors in the process of obtaining and transmitting. There are various types of noise according to the cause and form and research to remove this noise is being continued. Therefore the study suggested a way to filter to restore images damaged by salt and pepper noise which preserves non-noise signal and processes noise signal by expanding mask size according to the local mask noise density. In addition, as an objective evaluation standard of improvements, the study used PSNR(peak signal to noise ratio) to compare with previous methods.

  • PDF

A Study on Suppression of Ultrasonic Background Noise Signal using wavelet Transform (Wavelet변환을 이용한 초음파 잡음신호의 제거에 관한 연구)

  • 박익근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-141
    • /
    • 1999
  • Recently, advance signal analysis which is called "Time-Frequency Analysis" has been developed. Wavelet and Wigner Distribution are used to the method. Wavelet transform(WT) is applied to time-frequency analysis of waveforms obtained by an ultrasonic pulse-echo technique. The Gabor function is adopted as the analyzing wavelet. Wavelet analysis method is an attractive technique for evolution of material characterization evoluation. In this paper, the feasibility of suppression of ultrasonic background noise signal using WT has been presented. These results suggest that ultrasonic background noise ginal can be suppressed and enhanced even for SNR of 20.8 dB. This property of the WT is extremely useful for the detecting flaw echos embedded in background noise.und noise.

  • PDF

Prediction of Performance Loss Due to Phase Noise in Digital Satellite Communication System (디지털 위성통신시스템에서 위상 잡음으로 인한 성능 손실 예측)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Based on the alternating series expansion of error probability function due to phase noise in PSK systems, the performance evaluations for Tikhonov and Gaussian probability density functions were performed in this paper. The range of the signal-to-noise ratio of recovered carrier signal which provides the same dependency between the error performances by Tikhonov function and Gaussian function was analyzed via loss evaluation due to phase noise. The phase noise with 1/f$^2$ characteristic was generated based on the relationship of the phase noise spectral density and the modulation index for frequency modulation signal. Using the generated phase noise as the input signal for digital satellite communication receiver, the performance losses due to the phase noise were measured and evaluated with the analyzed performance characteristics.

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory (최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

Analysis of Images According to the Fluid Velocity in Time-of-Flight Magnetic Resonance Angiography, and Contrast Enhancement Angiography

  • Kim, Eng-Chan;Heo, Yeong-Cheol;Cho, Jae-Hwan;Lee, Hyun-Jeong;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.185-191
    • /
    • 2014
  • In this study we evaluated that flow rate changes affect the (time of flight) TOF image and contrast-enhanced (CE) in a three-dimensional TOF angiography. We used a 3.0T MR System, a nonpulsatile flow rate model. Saline was used as a fluid injected at a flow rate of 11.4 cm/sec by auto injector. The fluid signal strength, phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25-th cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast-to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the maximum intensity projection method. As a result, the length of inner cavity was 2.66 mm with no difference among the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part, 49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity. Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s. Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA and 3D CE MRA are displayed larger than in the actual measurement.

Frequency Domain DTV Pilot Detection Based on the Bussgang Theorem for Cognitive Radio

  • Hwang, Sung Sue;Park, Dong Chan;Kim, Suk Chan
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.644-654
    • /
    • 2013
  • In this paper, a signal detection scheme for cognitive radio (CR) based on the Bussgang theorem is proposed. The proposed scheme calculates the statistical difference between Gaussian noise and the primary user signal by applying the Bussgang theorem to the received signal. Therefore, the proposed scheme overcomes the noise uncertainty and gives scalable complexity according to the zero-memory nonlinear function for a mobile device. We also present the theoretical analysis on the detection threshold and the detection performance in the additive white Gaussian noise channel. The proposed detection scheme is evaluated by computer simulations based on the IEEE 802.22 standard for the wireless regional area network. Our results show that the proposed scheme is robust to the noise uncertainty and works well in a very low signal-to-noise ratio.

Partial Discharge Signal Denoising using Adaptive Translation Invariant Wavelet Transform-Online Measurement

  • Maheswari, R.V.;Subburaj, P.;Vigneshwaran, B.;Iruthayarajan, M. Willjuice
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.695-706
    • /
    • 2014
  • Partial discharge (PD) measurements have emerged as a dominant investigative tool for condition monitoring of insulation in high voltage equipment. But the major problem behind them the PD signal is severely polluted by several noises like White noise, Random noise, Discrete Spectral Interferences (DSI) and the challenge lies with removing these noise from the onsite PD data effectively which leads to preserving the signal for feature extraction. Accordingly the paper is mainly classified into two parts. In first part the PD signal is artificially simulated and mixed with white noise. In second part the PD is measured then it is subjected to the proposed denoising techniques namely Translation Invariant Wavelet Transform (TIWT). The proposed TIWT method remains the edge of the original signal efficiently. Additionally TIWT based denoising is used to suppress Pseudo Gibbs phenomenon. In this paper an attempt has been made to review the methodology of denoising the PD signals and shows that the proposed denoising method results are better when compared to other wavelet-based approaches like Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT), by evaluating five different parameters like, Signal to noise ratio, Cross-correlation coefficient, Pulse amplitude distortion, Mean square error, Reduction in noise level.

Improvement of Noise Performance in Phased-Array Receivers

  • Kim, Jung-Hyun;Jeong, Jin-Ho;Jeon, Sang-Geun
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.176-183
    • /
    • 2011
  • This paper presents a new analytical approach and experimental verification for the improvement of noise performance in phased-array receivers. For analysis purposes, a multi-channel array system is converted into an equivalent single-channel system, such that the two presents the identical signal and noise powers at the output, respectively. We define an effective gain, noise figure, and signal-to-noise ratio in the equivalent system. Through the proposed approach, the noise performance of the array receiver is analyzed in a general and straightforward manner and then compared to that of each individual array channel. In addition, the phase noise of the array system is analyzed in a rigorous manner, showing its effective reduction by a factor of the array size. The predicted improvement of the noise performance is experimentally confirmed with a CMOS integrated phased-array receiver.

Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm (심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1249-1256
    • /
    • 2019
  • In this paper, we propose a new algorithm to remove acoustic feedback and noise in hearing aids. Instead of using the conventional FIR structure, this algorithm is a deep learning algorithm using neural network adaptive prediction filter to improve the feedback and noise reduction performance. The feedback canceller first removes the feedback signal from the microphone signal and then removes the noise using the Wiener filter technique. Noise elimination is to estimate the speech from the speech signal containing noise using the linear prediction model according to the periodicity of the speech signal. In order to ensure stable convergence of two adaptive systems in a loop, coefficient updates of the feedback canceller and noise canceller are separated and converged using the residual error signal generated after the cancellation. In order to verify the performance of the feedback and noise canceller proposed in this study, a simulation program was written and simulated. Experimental results show that the proposed deep learning algorithm improves the signal to feedback ratio(: SFR) of about 10 dB in the feedback canceller and the signal to noise ratio enhancement(: SNRE) of about 3 dB in the noise canceller than the conventional FIR structure.

Impact Noise Source Localization in Noise (잡음 속에 묻힌 충격 소음원 위치 추정)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.774-779
    • /
    • 2004
  • This paper addresses the way in which we can find where impact noise sources are. Specifically, we have an interest in the case that the signal is embedded in noise. We propose a signal processing method that can identify impulsive sources’location. The method is robust with respect to noise; spatially distributed noise. This has been achieved by a beamforming method with regard to cepstrum domain is used. It is noteworthy that the cepstrum has the ability to detect periodic pulse signal in noise. Numerical simulation and experiments are performed to verify the method. Results show that the proposed technique is quite powerful for localizing the faults in noisy environments. The method also required less microphones than conventional beamforming method.

  • PDF