• Title/Summary/Keyword: Signal processing method

Search Result 2,538, Processing Time 0.03 seconds

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Multi-layered Gap Measurement on In-Vessel Cerium Retention Using Ultrasonic Wave Reflective Pattern Analysis and Frequency Diversity Signal Processing (초음파 반사 패턴과 주파수 대역 분할 신호처리를 이용한 다층구조인 노내 간극 측정)

  • Koo, Kil-Mo;Sim, Cheul-Mu;Kim, Jong-Hwan;Kim, Sang-Baik;Kim, Hee-Dong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.314-321
    • /
    • 2000
  • A gap between a $Al_2O_3/Fe$ thermite and lower head vessel is formed in the lower-plenum arrested vessel attack(LAVA) experiment which is the 1st phase study of simulation of naturally arrested vessel attack in vessel(SONATA-IV). The gap measurement using a conventional ultrasonic method would be lack of a reliability due to the structure complexity and the metallurgical grain size change of the lower head HAZ occurred by a thermite $Al_2O_3/Fe$ melt or a $Al_2O_3$ melt at $2300^{\circ}C$. The grain echoes having false signals and lower S/N ratio signals are detected due to a multiple scattering, a mode conversion and an attenuation of a ultrasonic resulted from at the interface of increased grain size zone. In this test, the signals pattern was classified to understand the behavior of the ultrasonic in a multi-layer specimen of solid-liquid-solid of assuming that the thermite and the lower head vessel is immersed. The polarity threshold algorithm of frequency diversity gives us the enhancement about 6dB of the ratio S/N.

  • PDF

Subsurface Geological Structure Using Shallow Seismic Reflection Survey (반사법 탄성파 탐사를 이용한 천부 지질 구조)

  • Kim Gyu-Han;Kong Young-Sae;Oh Jinyong;Lee Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1999
  • In terms of high resolution, seismic reflection survey is by far the most significant geophysical method applied to define subsurface structure. In shallow seismic reflection survey, it is, however, difficult to obtain high resolution image due to both the wave attenuation in the unconsolidated layer and the existence of source-generated surface waves Therefore, when collecting data, it is imperative to select proper equipments and choose optimum field data acquisition parameters for acquiring high S/N data. In this survey, a small size hammer was used as a low energy source and 40-Hz vertical geophones were used as receivers. Trigger signal was obtained from the hammer starter attached in the aluminum plate and thus it was possible to control the source onset time for the vertical stack. During the field work, a modified standard CMP technique was introduced to achieve the many-fold CMP data effectively. Data processing was conducted by the 'Seismic Unix' which is mounted on PC with a Linux operating system. The main distinctions were the emphasis and detail placed on near-surface velocity analysis and the extra care exercised in muting.

  • PDF

A Study about the Users's Preferred Playing Speeds on Categorized Video Content using WSOLA method (WSOLA를 이용한 동영상 미세배속 재생 서비스에 대한 콘텐츠별 배속 선호도 분석 연구)

  • Kim, I-Gil
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.291-298
    • /
    • 2015
  • In a fast-paced information technology environment, consumption of video content is changing from one-way television viewing to VOD (Video on Demand) playing anywhere, anytime, on any device. This video-watching trend gives additional importance to videos with fine-speed-control, in addition to the strength of the digital video signal. Currently, many video players provide a fine-speed-control function which can speed up the video to skip a boring part, or slow it down to focus on an exciting scene. The audio information is just as important as the visual information for understanding the content of the speed-controlled video. Thus, a number of algorithms for fine-speed-control video-playing technologies have been proposed to solve the pitch distortion in the audio-processing area. In this study, well-known techniques for prosodic modification of speech signals, WSOLA (Waveform-Similarity-Based Overlap-Add), have been applied to analyze users' needs for fine-speed-control video playing. By surveying the users' preferred speeds on categorized video content and analyzing the results, this paper proposes that various fine-speed adjustments are needed to accommodate users' preferred video consumption.

Performance Analysis of Multicarrier Code Selection CDMA System for PAPR Reduction in Multipath Fading Channel (PAPR을 줄이기 위한 Multicarrier Code Select CDMA시스템의 다중 경로 페이딩 채널에서 성능 분석)

  • Ryu Kwan Woong;Park Yong Wan;Hong Een Kee;Kim Myovng Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1319-1332
    • /
    • 2004
  • Multicarrier direct sequence code-division multiple access CDMA(MC DS-CDMA) is an attractive technique for achieving high data rate transmission even if the potentially large peak-to-average power ratio(PAPR) is an important factor for its application. On the other hand, code select CDMA(CS-CDMA) is an attractive technique with constant amplitude transmission of multicode signal irregardless of subchannels by introducing code selection method. In this paper we propose a new multiple access scheme based on the combination of MC DS-CDMA and CS-CDMA. Proposed scheme, which we called MC CS-CDMA, includes the sutclasses of MC DS-CDMA and CS-CDMA as special cases. The performance of this system is investigated for multipath Sequency selective fading channel and maximal ratio combining with rake receiver. In addition the PAPR of proposed system is compare with that of both MC BS-CDMA and CS-CDMA. Simulation results show that proposed system improves PAPR reduction than MC DS-CDMA at the expense of the complexity of receiver and the number of available non. Also, the numerical result shows that the proposed system is better performance than MC DS-CDMA due to the increasing processing gain and the number of time diversity gain.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF