• Title/Summary/Keyword: Signal Vector Magnitude

Search Result 84, Processing Time 0.026 seconds

Performance of Magnitude Sum Correlation and Vector Sum Correlation Methods for Robust Frame Synchronization Under Low Signal-to-Noise Ratios (낮은 신호 대 잡음 비에서 강건한 프레임 동기를 위한 크기 합 상관 및 벡터 합 상관 방식의 성능 평가)

  • Lee, Dong-Uk;Kim, Sang-Tae;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.32-37
    • /
    • 2008
  • Satellite communication systems including the DVB-S2 (Digital Video Broadcasting - Satellite Version 2) system require operations under low signal-to-noise ratio (SNR) and large frequency offset values, and the initial frame synchronization process necessitates a robust correlation method. While a variety of conventional correlation structures exist for the initial synchronization, each method has different characteristics and performance in different channel environments. In this paper, we propose new correlation methods which exhibit enhanced performance in low SNR and large frequency offsets, and analyze their performance. The proposed methods use the magnitude sum and vector sum of extended differential correlation values, to maximize the correlation between the received signal and the synchronization sequence by using the spanned differential correlation result. The magnitude sum correlation method has better performance compared to conventional methods including the approximated ML (Maximum likelihood) method for SNR values below 4 dB with or without frequency offsets. The vector sum correlation method has improved performance over the magnitude sum method for channels with relatively small frequency offsets.

Low Complexity Gradient Magnitude Calculator Hardware Architecture Using Characteristic Analysis of Projection Vector and Hardware Resource Sharing (정사영 벡터의 특징 분석 및 하드웨어 자원 공유기법을 이용한 저면적 Gradient Magnitude 연산 하드웨어 구현)

  • Kim, WooSuk;Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.414-418
    • /
    • 2016
  • In this paper, a hardware architecture of low area gradient magnitude calculator is proposed. For the hardware complexity reduction, the characteristic of orthogonal projection vector and hardware resource sharing technique are applied. The proposed hardware architecture can be implemented without degradation of the gradient magnitude data quality since the proposed hardware is implemented with original algorithm. The FPGA implementation result shows the 15% of logic elements and 38% embedded multiplier savings compared with previous work using Altera Cyclone VI (EP4CE115F29C7N) FPGA and Quartus II v15.0 environment.

Development of energy expenditure measurement device based on voice and body activity (음성과 활동량을 이용한 에너지 소모량 측정기기 개발)

  • Im, Jae Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.303-309
    • /
    • 2012
  • Energy expenditure values were estimated based on the voice signals and body activities. Voice signals and body activities were obtained using PVDF contact vibration sensor and 3-axis accelerometer, respectively. Vibration caused by voices, activity signals, and actual energy consumption were acquired using data acquisition system and gas analyzer. With the use of power values from the voice signals and weight as independent variables, R-square of 0.918 appeared to show the highest value. For activity outputs, use of signal vector magnitude, body mass index, height, and age as independent variables revealed to provide the highest correlation with actual energy expenditure. Estimation of energy expenditure based on voice and activity provides more accurate results than based on activity only.

Fabrication and Characterization of an Underwater Acoustic Tonpilz Vector Sensor for the Estimation of Sound Source Direction (음원의 방향 추정을 위한 수중 음향 Tonpilz 벡터 센서의 제작 및 특성 평가)

  • Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.351-359
    • /
    • 2015
  • Typical underwater acoustic transducers detect only the magnitude of an acoustic pressure and they have the limitation of not being able to recognize the direction of the sound signal. Hence, the authors of this paper proposed a new vector sensor structure based on Tonpilz transducers that could detect both the magnitude and the direction of a sound pressure. In the proposed structure, the piezoceramic ring was divided into four segments, and proper combination of the output voltages of the segments in response to the external sound pressure could provide the information on the orientation of the sound source. In this paper, a Tonpilz transducer has been fabricated to have the proposed structure and its characteristics has been measured to confirm the validity of the proposed structure.

Design of Vector Attenuator (벡터 감쇠기의 설계)

  • 정용채;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.31-37
    • /
    • 1998
  • Magnitude/phase controlling circuit which is composed of attenuator and phase shifter make phase/gain cross-coupling, so too much tuning time is needed to find optimum operation point. In this paper, vector attenuator which control magnitude and phase of input signals is proposed. Vector attenuator in past ignores phase variation characteristics of attenuator, but vector attenuator of this paper compensates phase variation characteristics of attenuator. This vector attenuator consists of 0$^{\circ}$/180$^{\circ}$ phase shifter and low phase shifting attenuator and so forth. A 0$^{\circ}$/180$^{\circ}$ phase shifter has 0$^{\circ}$/179.9$^{\circ}$ phase shifting characteristics at a center frequency 881 MHz and a low phase shifting attenuator has an attenuation of 25dB, within the limit of 3.6$^{\circ}$ phase shift and less than -20dB reflection characteristics at both input and output ports. The designed vector attenuator shows that cartesian coordinate plane of output signal space can be represented correctly.

  • PDF

Co-Simulation for Systematic and Statistical Correction of Multi-Digital-to-Analog-Convertor Systems

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • In this paper, a systematic and statistical calibration technique was implemented to calibrate a high-speed signal converting system containing multiple digital-to-analog converters (DACs). The systematic error (especially the imbalance between DACs) in the current combining network of the multi-DAC system was modeled and corrected by calculating the path coefficients for individual DACs with wideband reference signals. Furthermore, by applying a Kalman filter to suppress noise from quantization and clock jitter, accurate coefficients with minimum noise were identified. For correcting an arbitrary waveform generator with two DACs, a co-simulation platform was implemented to estimate the system degradation and its corrected performance. Simulation results showed that after correction with 4.8 Gbps QAM signal, the signal-to-noise-ratio improved by approximately 4.5 dB and the error-vector-magnitude improved from 4.1% to 1.12% over 0.96 GHz bandwidth.

Performance Analysis of Frequency Synchronization for HDR-WPAN System (HDR-WPAN 시스템을 위한 주파수 동기 성능분석)

  • Park, Ji-Woo;Kang, Hee-Gok;Kim, Jae-Young;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.163-168
    • /
    • 2004
  • In this paper, we propose a frequency synchronization algorithm using characteristic of CAZAC sequence for HDR-WPAN and analyze the performance by signal constellation and EVM(error vector magnitude). The proposed frequency offset technique estimated each sample phase error of two sequences among 12 CAZAC sequences which have excellent autocorrelated characteristic. Estimated phase error is multiplied to each sample of next sequence for compensating the frequency offset. The remaining frequency offset after compensating it with two sequences has maximum 0.002 offsest ranges at each sample. The computer simulation proved that the permission of EVM value had satisfied in the case of DQPSK at 20[dB].

  • PDF

A Study on PAPR Reduction and Compensation for In-Band Distortion in OFDM Systems (OFDM 시스템에서 PAPR의 감소와 대역 내 왜곡 보정에 관한 연구)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.912-920
    • /
    • 2008
  • OFDM (Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OFDM signal consists of a number of independently modulated subcarriers, which can give a large PAPR (Peak-to-Average Power Ratio) when added up coherently. In this paper, we apply clipping and filtering to solve the PAPR problem and compensate the inband compensation using calculated EVM (Error Vector Magnitude). The proposed method can reduce the PAPR and inband distortion. From the results, we analyze the PAPR reducing efficiency and EVM, BER performance of proposed algorithm in the wireless communication system.

Nonlinearity Detection and Compensation in Radio over Fiber Systems Using a Monitoring Channel

  • Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2015
  • A radio over fiber (RoF) system is a kind of analog optical transmission system and considered as a strong candidate for the next-generation fronthaul link in the future mobile network. In RoF systems, nonlinearity compensation is essential to increase the link capacity. In this paper, we propose a nonlinearity detection and compensation scheme using a monitoring channel in RoF systems. A monitoring channel is added at the transmitter site and used for transmitting a reference signal in an RoF transmission. The nonlinearity in the RoF transmission is detected by comparing the received monitoring signal and the original reference signal at the receiver site. Finally, the nonlinearity is compensated at the receiver by giving the reverse function of the detected nonlinearity. Our results show that the proposed scheme can almost remove the error vector magnitude degradation induced by the nonlinearity in the RoF system.