• 제목/요약/키워드: Signal Tracking Loop

검색결과 116건 처리시간 0.026초

Design Practice of a Vehicle Mounted Platform Servo Control System Slaved to the Independently Controlled Tracking System

  • 안태영;강태하;손승걸;조성훈;최영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 1992
  • This paper presents a one cycle R&D project regarding the large inertia platform servo control system. The steps followed the rather orthodox procedure. A serial double rate-loop was closed with a position loop, and acceleration velocity anticipatory compensations were designed in the forward path. Some appropriate compensation devices were utilized for the signal processing as well as for the better control quality. Simulations and experimental tests were repeated, and satisfactory performances were observed. However, frequency domain uncertainties inherent to the large structures still remain as an expertise supported subject.

A Controller Design for Teleoperated Systems with Signal Transmission Time Delay

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.116.1-116
    • /
    • 2002
  • When the teleoperated system has a signal transmission time delay between slave and control system , the system stability as well as the position tracking and the force reflecting performances are likely to be deteriorated. This paper proposed a bilateral control scheme and a controller design method for the teleoperated control systems with a signal transmission time delay. The proposed controller is a modified type of smith predictor for the time delay in each input and output stage of an open loop unstable plant. The proposed controller not only satisfies the system internal stability but also improves the position tracking performance with disturbance rejection capability. The simulation...

  • PDF

Robust Sinusoidal Tracking of High Performance Torsional Plants

  • Oloomi, Hossein M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1581-1586
    • /
    • 2004
  • In this paper, we study the tracking performance of a torsion disk system where the plant is required to track a triangular-type command signal with a small steady state error and delay. We investigate the tracking performance of the traditional inner/outer loop approach and underline its limitations in high performance applications. We then design a more advanced controller using the mixed sensitivity robust control approach and show that the tracking performance of the system can be improved substantially. The success of the design, even for the case of lightly damped plants such as the one considered in this paper, is largely the result of the proper weights selection used in the mixed sensitivity design. The main contribution of this paper is, therefore, the development of design guidelines for the weights selection when accurate tracking of periodic reference signals are desired.

  • PDF

Performance Analysis of a Vector DLL Based GPS Receiver

  • Lim, Deok Won;Choi, Heon Ho;Lee, Sang Jeong;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2012
  • For a Global Positioning System (GPS) receiver, it is known that a Vector Delay Locked Loop (DLL) in which the code signals of each satellite are tracked in parallel by using navigation results shows better performance in the aspect of the tracking accuracy and the robustness than that of a Scalar DLL. However, the quantitative analysis and the logical grounds for that performance enhancement of the Vector DLL are not sufficient. This paper, therefore, proposes the structure of the GPS receiver with the Vector DLL and analyzes the performance of it. The tracking and the positioning accuracy of the Vector DLL are theoretically analyzed and confirmed by simulation results. From the simulation results, it can be seen that the tracking and positioning accuracy has been improved about 30% in case that the receiver is static and the positioning is conducted for every Pre-detection Integration Time (PIT) while C/N0 is 45 dB-Hz.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

비구조적인 불확실성을 가지는 시스템에 대한 반복 제어기의 설계 (Design of a repetitive controller for the system with unstructured uncertainty)

  • 도태용;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.779-782
    • /
    • 1996
  • Repetitive control is a proposed control strategy in view of the internal model principle and achieves a high accuracy asymptotic tracking property by implementing a model that generates the periodic signals of period into the closed-loop system. Since the repetitive control system contains a periodic signal generator with positive feedback loop, which reduces the stability margin, in the overall closed-loop system, the stability of the closed-loop system should be considered as an important problem. In case that a real system has plant uncertainties which are not represented through modeling, the robust stability problem of the repetitive control system has not been considered sufficiently. In this paper, we propose the robust stability condition for the system with modeling uncertainty. The proposed robust stability condition will be obtained using the robust performance condition in the H$_{\infty}$ control. Moreover, by use of the proposed robust stability condition, we propose a procedure that designs a repetitive controller and a feedback controller simultaneously which can stabilize the overall closed-loop system robustly and which can also do the closedloop system without repetitive controller..

  • PDF

디지털 지연동기루프의 설계 및 구현 (Design and implementation of digital delay locked loop)

  • 박형근;김성철;차균현
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.2043-2054
    • /
    • 1996
  • In this paper, Digital Delay Locked Loop(DDLL) is designed, implemented and analysed by experiment whose results show that it is possible to track the received signal by this scheme. Designed digital DLL has an advantage that it is not needed to maintain gain balance between early and late channels, which has been problem with an analog DLL. Also DDLL has more improved noise performance compared to analog DLL due to noise level limitation and noise cancellation characteristics. For various loop parameters, their effects on loop performance are analysed and simulated. Proposed DDLL is the first attempt as a digital approach in code tracking loop and it is expected to be a good reference for spread spectrum communication research.

  • PDF

GPS L1 신호에서 코드지연에 따른 기만신호 영향 분석 (Analysis of Effect of Spoofing Signal According to Code Delay in GPS L1 Signal)

  • 김태희;신천식;이상욱
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.128-133
    • /
    • 2012
  • 본 논문에서는 기만신호의 영향을 분석하기 위하여 기만신호의 코드지연에 따른 코드 및 반송파 추적에 대한 결과를 분석하였다. 기만신호의 특성 및 방어 방법에 대한 조사를 통하여 현재 GPS 신호와 동기를 유지할 수 있는 중급기만을 고려하여 기만신호생성기를 이용하여 시뮬레이션을 수행하였다. 기만신호생성기에서 생성한 정상신호 및 기만신호가 합성된 신호를 소프트웨어 수신기를 통하여 신호처리를 수행하였다. 본 논문에서는 코드추적루프(DLL) 및 위상추적루프(PLL)의 출력값을 비교분석하여 기만신호의 영향을 파악하였으며 또한 기만신호 인가 시 잘못된 의사거리에 따른 항법해의 영향을 분석하였다. 결과적으로 기만신호의 영향은 신호추적 단계에서는 1칩 이내의 코드지연을 갖는 기만신호의 영향을 받으며 신호획득에서는 코드 지연에 상관없이 영향을 받는 것을 확인하였다.

Inmarsat M4 시스템 수신기를 위한 16-QAM Carrier Recovery Loop 설계 (Design of a 16-QAM Carrier Recovery Loop for Inmarsat M4 System Receiver)

  • 장경덕;한정수;최형진
    • 한국통신학회논문지
    • /
    • 제33권4A호
    • /
    • pp.440-449
    • /
    • 2008
  • 본 논문에서는 Inmarsat M4 시스템의 수신기의 실제 구현에 적합한 16-QAM (Quadrature Amplitude Modulation) carrier recovery loop를 제안한다. Inmarsat M4 시스템 규격에서 권고하는 frequency tolerance는 ${\pm}924\;Hz$ (Signal bandwidth: 33.6 kHz) 로서 이러한 상대적으로 큰 주파수 옵셋 환경에서 안정된 동작이 가능한 carrier recovery loop 설계가 요구된다. 일반적인 PLL(Phase Locked Loop) 만을 이용한 carrier recovery loop는 상대적으로 큰 주파수 옵셋 환경에서 안정적인 성능을 보장할 수 없으며, 이에 따라 본 논문에서는 상대적인 주파수 옵셋이 큰 환경에서도 안정적이 동작이 가능한 Inmarsat M4 시스템을 위한 carrier recovery loop 루프를 제안한다. 제안된 carrier recovery loop는 우선 carrier recovery 이전에 UW 신호 detection 을 위해 주파수 옵셋에 강인한 differential filter 기반의 noncoherent 방식의 detector를 이용하여 UW detection을 수행하였으며, 이후 초기 주파수 옵셋 포착을 위해 UW(Unique Word) 신호를 이용한 차동 방식의 CP(Cross Product)-AFC를 적용하였다. 또한 일반적으로 알려진 16-QAM NDA (Non Data Aided) 방식 대신 안정적인 jitter 성능을 위하여 16-QAM DD(Decision Directed) 방식의 PLL 을 적용하여 위상 추적을 수행하였으며, 성능 검증을 통해 제안된 16-QAM carrier recovery loop가 만족스러운 성능과 신뢰성 있는 동작이 가능함을 입증하였다.

외란관측기를 이용한 모션 스테이지의 위치제어 (Position Control of Motion Stage using Disturbance Observer)

  • 박해준;최명수;변정환
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.82-88
    • /
    • 2013
  • For commercialized servo drives of the motion stage to include embedded controller, external terminal is provided for tracking command and encoder output, but internal terminal is not for control input. Thus, it is difficult to combine out signal of embedded controller with that of external compensator such as disturbance observer. In this study, for precise tracking control of motion stage without hardware change of the servo drive, tacking control system is composed of an inner loop of servo drive and an outer loop of disturbance observer. Then, the control system is designed so that the output response of actual plant corresponds with nominal model's in transient state as well as in steady state. Finally, the experiment results show that the designed control system is effective to reconcile actual plant behavior with nominal model under nonlinear friction and parameter perturbation.