• Title/Summary/Keyword: Signal Timing

Search Result 572, Processing Time 0.02 seconds

(An Implementation of Timing Signal Board to Analyze the EA Effect for Coherent Radar Systems) (위상정합 레이더에 대한 EA효과 분석용 타이밍 신호발생기)

  • Sin, Hyeon-Ik;Im, Jung-Su;Kim, Hwan-U
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • A timing signal board which can be used to analyze EA effect for coherent radar systems is introduced. It is capable of generating the timing signals that are needed for EA test about radar systems in real time. Its function to generate baseband target signal makes it easy to analyze EA effect. Because all parameters of timing signals can be changed by software, it is very easy to configure many kinds of test scenarios.

A Study on the Optimal Signal Timing for Area Traffic Control (지역 교통망 관리를 위한 최적 신호순서에 관한 연구)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.69-80
    • /
    • 1999
  • A genetic algorithm to determine the optimal signal sequence and double cycle pattern is described. The signal sequence and double cycle pattern are used as the input for TRANSYT to find optimal signal timing at each junction in the area traffic networks, In the genetic process, the partially matched crossover and simple crossover operators are used for evolution of signal sequence and double cycle pattern respectively. A special conversion algorithm is devised to convert the signal sequence into the link-stage assignment for TRANSYT. Results from tests using data from an area traffic network in Leicester region R are given.

  • PDF

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

Performance Characteristics of a Symbol Timing Detection by Superposed Difference Method for OFDM (중첩의 차분화방식에 의한 OFDM 심벌 타이밍검출 성능)

  • Joo, Chang-Bok;Park, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.46-54
    • /
    • 2007
  • In this paper, we introduce the performance of improved symbol timing detection by the superposed difference type symbol timing detection method in the OFDM system. Also, we represent the maximum detection probability of symbol synchronization timing at each received delay signal in multipath channel delay profile in the correlation and difference type symbol timing detection methods. The computer simulation results show that the correlation symbol timing detection method have maximum detection probability at the lead of the nth received delay signal of highest amplitude, but the difference type symbol timing detection method always have maximum detection probability at the lead of the first received delay signal in the channel delay spread of $70nsec{\sim}217nsec$. The simulation results indicate the possibility of the perfect detection of OFDM symbol synchronization timing and it fit well with the results of improved S/N to the eb/n0 and the performance of symbol timing detection of the proposed method.

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

Adaptive Beamformer Using Signal Location Information for Satellite

  • Kim, Se-Yen;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.379-385
    • /
    • 2020
  • The satellite employs an adaptive beamformer to efficiently detect various signals and to suppress multiple interference signals, simultaneously. Although the adaptive beamforming satellite system needs Angle-of-Arrival (AOA) information of the desired signal, it is difficult to estimate the signal AOAs on the satellite environment. However, the AOA estimation on the ground control tower is more efficient and accurate comparing to the satellite environment. In this paper, we propose an adaptive beamforming satellite system based on the signal location information on the ground, consisting on an angle estimator, an adaptive beamformer, and signal processing & D/B unit. The ground control tower estimates the accurate location of the signal source, and it sends the estimated coordinates of the desired signal to the satellite. The angle estimator mounted on the satellite calculates the desired signal AOA, based on the signal location information transmitted from the ground control center. The satellite beamformer detects the desired signal and suppresses unwanted signals based on the signal AOA calculated by the angle estimator. We provide computer simulation results to present the performance of the proposed satellite adaptive beamforming system based on the signal location information.

Analysis of the Timing Detector's Characteristics of the Modified BECM(M-BECM) Algorithm (M-BECM의 타이밍 검출기 출력 특성 분석)

  • 이경하;김용훈;최형진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.28-38
    • /
    • 1997
  • Previously, we have proposed the M-BECM(Modified-Band Edge Component Maximization), which is a symbol synchronization algorithm based on spectral line method for all-digital high speed digital communications. However, Until now, the characteristics of the timing detector based on the spectral line method including M-BECM was not analyzed, particularly the effect of a timing offset at the optimal convergence pont. In this paper, we analyze the timing dtector's characteristics of the M-BECM and present optimal design value. First, the expression for the timing detector's mean value(often called its S-Curver) as a function of the normalized symbol timing offset is derived. Next, the P $D_{bias}$, the value for compensating the timing offset at an optimal convergence point, and the bandwidth of bandpass filter in the timing detector are calculated. It is also shown and analyzed that the P $D_{bias}$ is affected by varuous factors such as the excess bandwidth of input signal, frequency offsets, noise and particularly, the excess bandwidth of input signal is a major parameter to decide P $D_{bias}$. Finally, analytic resutls are compared to simulation results.

  • PDF

Analysis of Cylinder Compression Pressure & Valve Timing by Motoring Current & Crank Signal during Cranking (모터링시 전류 파형과 크랭크각 센서를 이용한 기관의 압축압력 및 밸브 타이밍 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-50
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Conventional method, however, to check compression pressure uniformity is done by mechanical pressure gage and valve timing is checked manually. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and temperature. Also to check valve timing, related FEAD parts should be disassembled and timing mark should be checked. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. Results, it is found that detection of bulky as well as small leaky cylinder is possible by cranking motor current analysis and wrong valve timing can be detected by cylinder pressure analysis and cam and crank sensor signal.

Analysis of Jamming Robustness Performance According to RNSS Signal Waveforms

  • Subin Lee;Kahee Han;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.229-236
    • /
    • 2023
  • As the importance and dependency of the positioning, navigation, and timing (PNT) information provided by the radio navigation satellite service (RNSS) increases, the vulnerability of RNSS to jamming can lead to significant risks. The signal design under the consideration of anti-jamming performance helps to provide service which is robust to jamming environment. Therefore, it is necessary to evaluate the jamming robustness performance during the design of new signals. In this paper, we introduce figures-of-merit (FoMs) that can be used for an anti-jamming performance analysis of designed signals of interest. We then calculate the FoMs, such as the quality factor (Q factor), tolerable jamming-to-signal ratio (tolerable J/S), and range to jammer (d) for legacy RNSS signals and analyze the results. Finally, based on the results of the analysis, we derive waveform design conditions to obtain good anti-jamming performance. As a result, this paper shows that the waveforms with wide bandwidth leading to good spectral efficiency provide strong anti-jamming performance.