• Title/Summary/Keyword: Signal Processing Software Technique

Search Result 45, Processing Time 0.029 seconds

Next-Generation Personal Authentication Scheme Based on EEG Signal and Deep Learning

  • Yang, Gi-Chul
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1034-1047
    • /
    • 2020
  • The personal authentication technique is an essential tool in this complex and modern digital information society. Traditionally, the most general mechanism of personal authentication was using alphanumeric passwords. However, passwords that are hard to guess or to break, are often hard to remember. There are demands for a technology capable of replacing the text-based password system. Graphical passwords can be an alternative, but it is vulnerable to shoulder-surfing attacks. This paper looks through a number of recently developed graphical password systems and introduces a personal authentication system using a machine learning technique with electroencephalography (EEG) signals as a new type of personal authentication system which is easier for a person to use and more difficult for others to steal than other preexisting authentication systems.

Computer Based Three Phase Power Analysing System (3상 전력을 기반으로 한 시스템 해석 컴퓨터)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.675-676
    • /
    • 2008
  • The computer based three phase power analysing system has been developed as a traveling standard for onsite power calibration. The system is utilized with digital-to-analog converts which were synchronized each other. Using digital signal processing technique the software has been developed to calculate power parameters. The calibration system is fully traceable to national standard system and, accuracy allows the calibration of industrial power measurement systems.

  • PDF

Implementation of counterfeit banknote detection counter using RTOS (RTOS를 이용한 위폐검출 계수기의 구현)

  • 정원근;신태민;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.364-370
    • /
    • 2002
  • A banknote counter is a machine that automates counting the money in some agencies to treat much banknotes as well as general banking agencies. The banknote counter materialized in this paper is the machine that adds the function of banknote sorting, detecting plural banknote and detecting counterfeit banknote to an existing banknote counter. The technique of sensor signal processing are used for banknote sorting. The technique of sensor application and data processing are used for detecting counterfeit banknote. The technique of precision equipment design and microprocessor application are used for high speed count. Software improved in debugging and difficulties to link with additional hardware. It was materialized through effective control algorithm and real-time signal processing with C-language on the basis of RTOS(real-time operating system) Photodiode, its applications and a magnetic resistance sensor are used as a sensor device with regard to hardware cost -cutting and process velocity. PCF80C552-24 of Philips using Intel I8051 core is used as a control microprocessor. As the results so far achieved, counterfeit banknotes made by the use of a color duplicator and a color Printer, are distinguished from real banknotes through mixing an optical with a magnetic sensor. and, in case that there are some different banknotes while counting, it is prevented for them to be counted without discriminating from the same kind of banknotes in addition to the fu notion of banknote sorting.

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.

Exclusion zones for GNSS signals when reconfiguring receiver hardware in the presence of narrowband RFI

  • Balaei, Asghar T.;Dempster, Andrew G.;Barnes, Joel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.347-352
    • /
    • 2006
  • Narrowband interference can severely degrade the performance of GPS receivers. Detecting the presence of interference and then characterizing it can lead to its removal. Receivers can be reconfigured to focus on other signals or satellites that are less vulnerable to that interference at that moment. Using hardware reconfigurability of FPGA receivers and characterizing the effect of narrowband interference on the GNSS signal quality lead us to a new RFI mitigation technique in which the highest quality and less vulnerable signal can be chosen at each moment. In the previous work [1], the post processing capability of a software GPS receiver, has been used to detect and characterize the CW interference. This is achieved by passing the GPS signal and the interference through the correlator. Then, using the conventional definition of C/No as the squared mean of the correlator output divided by its variance, the actual C/No for each satellite is calculated. In this work, first the 'Exclusion zone' for each satellite signal has been defined and then by using some experiments the effects of different parameters like signal power, jamming power and the environmental noise power on the Exclusion zone have been analyzed. By monitoring the Doppler frequency of each satellite and using the actual C/No of each satellite using the traditional definition of C/No and actual data from a software GPS receiver, the decision to reconfigure the receiver to other signal can be made.

  • PDF

Design and Implementation of a SDR-based Digital Filter for CDMA Systems

  • Yu, Bong-Guk;Bang, Young-Jo;Kim, Dae-Ho;Lee, Kyu-Tae;Ra, Sung-Woong
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 2008
  • In this study, Software Defined Radio (SDR) technology-based digital filterbank architecture applicable to a multiple-channel processing system such as a wireless mobile communication system using Code Division Multiple Access (CDMA) technology is proposed. The technique includes a micro-processor to redesign Finite Impulse Response (FIR) filter coefficients according to specific system information and to download the filter coefficients to one digital Band Pass Filter (BPF) to reconfigure another system. The feasibility of the algorithm is verified by computer simulation and by implementing a multiple-channel signal generator that is reconfigurable to other system profiles, including those of a Wideband Code Division Multiple Access (WCDMA) system and a CDMA system.

  • PDF

Assessment of Bearing Damage by Ultrasonic Measurement (초음파 측정에 의한 베어링손상 평가)

  • LEE SANG-GUK;LEE In-CHEOL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF

High Accurate Creep Compensation of the Loadcell using the Strain Gauge (스트레인 게이지식 로드셀의 고정밀 크립보상)

  • Seo, Hae-Jun;Jung, Haing-Sup;Ryu, Gi-Ju;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.34-44
    • /
    • 2012
  • This paper proposes a practical compensation method by using digital signal processing over the creep error which is representative in strain gauge loadcell. The signal compensation method carry out the simulation by deciding compensation constant (time constant) and coefficient measuring the loadcell output response. Then, compensation constant and coefficient are stored on the microprocessor. By using calculated on microprocessor creep error compensation values, weighting value is showed as a digital signal by reducing error values measured through output signals of loadcell. In addition, we apply error compensation method in order to have a dedicated software for loadcell electronic scale. This technique is useful because it has great influence on error rate reduction that has been produced by conventional electronic scales (0.03%). As a result our technique gives better accuracy (0.01%~0.003%) as what is given by digital electronic scale, while it has less complex operation processing.

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.