Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.
Journal of Satellite, Information and Communications
/
v.10
no.3
/
pp.94-101
/
2015
The display device is an important video information communication system device to connect between human and device. it transfers the information as characters, shapes, images and pattern to enable recognizing by eyes. Theres absolutely needs some key functions and role to quickly display informations. It can analyse a information through a PPI Scope of a cathode-ray tube(CRT) displays information which can perform a role. this research proposed a radar device to display informations as received signal. The radar display researches can apply to fixed function graphics pipeline algorithms of the large capacity type through a vertical blanking interval and buffer swap of display unit. Also, it can be possible to apply to performed algorithms to FPGA logic without high-performance graphics processing unit GPU through synchronization which can implement a display system. In this paper, we improved the affordability and reliability through proposed research. 이So, we have studied the radar display unit which can change a flat display from radar display of CRT radar display.
The Transactions of the Korea Information Processing Society
/
v.3
no.2
/
pp.369-380
/
1996
Inductive Loop Detector(ILD) has been commonly used in collecting traffic data such as occupancy time and non-occupancy time. From the data, the traffic volume and type of passing vehicle is calculated. To provide reliable data for traffic control and plan, accuracy is required in type recognition which can be utilized to determine split of traffic signal and to provide forecasting data of queue-length for over-saturation control. In this research, a new recognition model issuggested for recognizing typeof vehicle from thecollected data obtained through ILD systems. Two clustering methods, based on statistical algorithms, and one neural network clustering method were employed to test the reliability and occuracy for the methods. In a series of experiments, it was found that the new model can greatly enhance the reliability and accuracy of type recongition rate, much higher than conventional approa-ches. The model modifies the neural network clustering method and enhances the recongition accuracy by iteratively applying the algorithm until no more unclustered data remains.
The first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. The special feature with GOCI is that like MODIS, MERIS and GLI, it will include the band triplets 660-680-745 for the measurements of sun-induced chlorophyll-a fluorescence signal from the ocean. The GOCI will provide SeaWiFS quality observations with frequencies of image acquisition 8 times during daytime and 2 times during nighttime. With all the above features, GOCI is considered to be a remote sensing tool with great potential to contribute to better understanding of coastal oceanic ecosystem dynamics and processes by addressing environmental features in a multidisciplinary way. To achieve the objectives of the GOCI mission, we develop the GOCI Data Processing System (GDPS) which integrates all necessary basic and advanced techniques to process the GOCI data and deliver the desired biological and geophysical products to its user community. Several useful ocean parameters estimated by in-water and other optical algorithms included in the GDPS will be used for monitoring the ocean environment of Korea and neighbouring countries and input into the models for climate change prediction.
Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.
Seo, Sung-Bo;Kang, Jae-Woo;Nam, Kwang-Woo;Ryu, Keun-Ho
Journal of KIISE:Databases
/
v.33
no.2
/
pp.163-174
/
2006
In distributed wireless sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. We propose a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes input as a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a standard text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Bayesian classifier and SVM, and for unsupervised, we tested Jaccard, TFIDF Jaro and Jaro Winkler. In our experiments, SVM and TFIDF outperformed other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.3
/
pp.186-191
/
2019
In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.2
/
pp.113-118
/
2023
The WiFi fingerprint method for location estimation within the home has the advantage of using the existing infrastructure and estimating absolute coordinates, so many studies are being conducted. Existing studies have mainly focused on the study of localization algorithms, but the improvement of accuracy has reached its limits. However, since a wireless LAN receiver such as a smartphone cannot measure signals smaller than the reception sensitivity of radio signals, the position estimation error varies depending on the method of processing these values. In this paper, we proposed a method to increase the location estimation accuracy by pre-processing the received signal data of the measured wireless LAN router in various ways and applying it to the existing algorithm, and greatly improved accuracy was obtained. In addition, the preprocessed data was applied to the KNN method and the CNN method and the performance was compared.
Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.49
no.4
/
pp.17-22
/
2012
Convolution filtering methods have been widely applied to various digital signal processing fields for image blurring, sharpening, edge detection, and noise reduction, etc. According to their application purpose, the filter mask size or shape and the mask value are selected in advance, and the designed filter is applied to input image for the convolution processing. In this paper, we proposed an image processing acceleration method for the convolution processing by using two-dimensional Look-up table (LUT) and overlap-region buffering technique. First, based on the fixed convolution mask value, the multiplication operation between 8 or 10 bit pixel values of the input image and the filter mask values is performed a priori, and the results memorized in LUT are referred during the convolution process. Second, based on symmetric structural characteristics of the convolution filters, inherent duplicated operation region is analysed, and the saved operation results in one step before in the predefined memory buffer is recalled and reused in current operation step. Through this buffering, unnecessary repeated filter operation on the same regions is minimized in sequential manner. As the proposed algorithms minimize the computational amount needed for the convolution operation, they work well under the operation environments utilizing embedded systems with limited computational resources or the environments of utilizing general personnel computers. A series of experiments under various situations verifies the effectiveness and usefulness of the proposed methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.