• 제목/요약/키워드: Signal Peptide

Search Result 348, Processing Time 0.028 seconds

Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350 (형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Streptomycetes is a group of Gram-positive soil bacteria that growas a branching vegetative mycelium leading to the formation of spores, and display a physiological differenti-ation related to the synthesis of many secondary metabolites including antibiotics. Their complex life cycle and multicellular differentiation require various levels of regulation and types of signal transduction systems including eukaryotic-type serine/threonine protein kinases and prokaryotic-type histidine/aspartic acid protein kinases. Akt kinase that was found in cells is a sorine/threonine kinase controlling signal pathway for multi-tude of important cellular events. The activation or inactivation of Akt kinase in the cell is one of the critical regulatory points to deliver cell proliferation, differentiation, survival or apoptosis signal. To find the regula-tory protein homologous to Akt in Streptomyces, the fluorescien-labeled synthetic peptide (FITC-TRRSR-TESIT) was designed from the consensus sequence of target proteins for Akt kinase. From the difference of the mobility between the nonphosphorylated and phosphorylated synthetic peptides on Agarose gel electro-phoresis, the Akt-phosphorylating activity was monitored. The cell-free extract prepared from Streptomyces griseus IFO 13350 and the Akt homologous protein was purified by ammonium sulfate fractionation and many steps of column chromatographies such as, DEAE-Sepharose, Mono Q, Resource Phenyl-Soporose and Gel permeation column chromatographies. As a result, the protein phosphorylating the fluorescien-labeled Akt substrate was identified and it's molecular weight was estimated as 39 kDa on SDS-PAGE.

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Extracellular Overproduction of $\beta$-Cyclodextrin Glucanotransferase in a Recombinant E. coli Using Secretive Expression System

  • Lee, Kwang-Woo;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.753-759
    • /
    • 2002
  • $\beta$-Cyclodextrin glucanotransferase ($\beta$-CGTase) was overproduced extracellularly using recombinant E. coli by transforming the plasmid pECGT harboring a secretive signal peptide. The $\beta$-CGTase gene of alkalophilic Bacillus firmus var alkalophilus was inserted into the high expression vector pET20b(+) containing a secretive pelB signal peptide, and then transformed into E. coli BL2l(DE3)pLysS. The optimum culture conditions fer the overproduction of $\beta$-CGTase were determined to be TB medium containing 0.5% (w/v) soluble starch at post-induction temperature of $25^{\circ}C$. A significant amount of $\beta$-CGTase, up to 5.83 U/ml, which was nine times higher than that in the parent strain B. firmus var. alkalophilus, was overproduced in the extracellular compartment. A pH-stat fed-batch cultivation of the recombinant E. coli was also performed to achieve the secretive overproduction of $\beta$-CGTase at a high cell density, resulting in production of up to 21.6 U/ml of $\beta$-CGTase.

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells (임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현)

  • 김현주
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 1998
  • The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

  • PDF

A DPL (DNA/peptide/liposomes) Tripartite Complex Effective for Transfection in Serum

  • Kim Young-Cheol;Park Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.187-194
    • /
    • 2004
  • A short peptide corresponding to the nuclear localization signal (NLS) of human immunodeficiency virus (HIV)-l Tat protein, Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg, was employed to improve the efficiency of cellular uptake of nucleic acids. The peptide was first mixed with a reporter plasmid and then with cationic liposomes to form a tripartite complex of DNA/peptide/liposomes (DPL). Transfection efficiency of the DPL complex was compared with that of the conventional DNA/liposomes (DL) complex. When the DPL complex was formed with various cationic liposomes, DOTAP/DOPE (DP) liposome exhibited superior transfection efficiency to other liposomes tested in vitro. With the inclusion of the peptide, the DPL complex showed much enhanced transfection in various cancer cell lines. Particularly, transfection of the DPL complex in serum increased cellular uptake of a transgene up to 2 fold when compared with that in a serum free condition. Further, when the DPL complex was infused through the ureteric route of a rat, transfection efficiency was shown to be better in reporter gene expression than that obtained with the DL complex. This study shows that the DPL complex that is easy to formulate can be employed for much enhanced cellular uptake of a trans gene.

  • PDF

An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation

  • Yoon, I Na;Hong, Ji;Zhang, Peng;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.350-356
    • /
    • 2017
  • We previously reported that the CopA3 peptide (LLCIALRKK, ${\small{D}}-form$) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the ${\small{D}}-form$, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the ${\small{L}}-form$ structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor $(TNF)-{\alpha}$ secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and $TNF-{\alpha}$. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

Heterologous Expression of Yeast Prepro-$\alpha$-factor in Rat $GH_3$ Cells

  • Lee, Myung-Ae;Cheong, Kwang-Ho;Han, Sang-Yeol;Park, Sang-Dai
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • Yeast pheromone a-factor is a 13-amino acid peptide hormone that is synthesized as a part of a larger precursor, prepro-$\alpha$-factor, consisting of a signal peptide and a proregion of 64 amino acids. The carboxy-terminal half of the precursor contains four tandem copies of mature $\alpha$-factor. To investigate the molecular basis of intracellular sorting, proteolytic processing, and storage of the peptide hormone, yeast prepro-$\alpha$-factor precursors were heterologously expressed in rat pituitary $GH_3 cells. When cells harboring the precursor were metabolically labeled, a species of approximately 27 kD appeared inside the cells. Digestion with peptide: N-glycosidase F (PNG-F) shifted the molecular mass to a 19 kD, suggesting that the 27 kD protein was the glycosylated form as in yeast cells. The nascent polypeptide is efficiently targeted to the ER in the $GH_3 cells, where it undergoes cleavage of its signal peptide and core glycosylation to generate glycosylated pro-a-factor. To look at the post ER intracellular processing, the pulse-labelled cells were chased up to 2 hrs. The nascent propeptides disappeared from the cells at a half life of 30 min and only 10-25% of the newly synthesized, unprocessed precursors were stored intracellularly after the 2 h chase. However, about 20% of the pulse-labeled pro-$\alpha$-factor precursors were secreted into the medium in the pro-hormone form. With increasing chase time, the intracellular level of propeptide decreased, but the amount of secreted propeptide could not account for the disappearance of intracellular propeptide completely. This disappearance was insensitive to lysosomotropic agents, but was inhibited at $16^{circ}C or 20^{\circ}C$, suggesting that the turnover of the precursors was not occurring in the secretory pathway to trans Golgi network (TGN) or dependent on acidic compartments. From these results, it is concluded that a pan of these heterologous precursors may be processed at its paired dibasic sites by prohormone processing enzymes located in TGN/secretpry vesicles producing small peptides, and that the residual unprocessed precursors may be secreted into the medium rather than degraded intracellularly.

  • PDF

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Agouti Gene의 Human Homologue의 Molecular Structure와 Chromosomal Mapping

  • Heajoon Y. Kwon;Scott J. Bultman;Christiane Loffler;Chen, Wen-Ji;Paul J. Furdon;John G. Powell;Usala, Anton-Lewis;William Wilkison;Ingo Hansman
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.55-64
    • /
    • 1996
  • mouse chromesome2에 있는 agouti locus는 정상적으로는 털색깔을 조절하는 gene이다. mouse agouti gene은 최근에 cloning 되었고 131 amino acid peptide와 consensus signal peptide를 encode한다고 보고되었다. 이 논문에서 interspecies-DNA hybridization approach를 이용하여 mouse agouti gene의 human homologue를 cloning 하였다. Sequence analysis 결과, 이는 mouse gene에 85% 유사하였고 consensus signal peptide sequence 를 포함하는 132 amino acid를 coding하였다. somatic-cell hybrid mapping pannel과 Fluorescence-in-situ hybridization에 의한 chromosomal mapping을 한 결과, agouti gene은 MODY (maturity onset diabetes of the young), myeloid leukemia locus 등이 위치한 human chromosome 20q 11.2에 mapping 되었다. 성인 tissue로부터 추출한 RNA를 이용한 발현연구에 의하면 human agouti gene은 adipose tissue와 teatis에 발현되었다.

  • PDF