• 제목/요약/키워드: Signal Optimization Method

검색결과 332건 처리시간 0.03초

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법 (Optimization-based Real-time Human Elbow Joint Angle Extraction Method)

  • 최영진;유현재
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

An Abnormal Breakpoint Data Positioning Method of Wireless Sensor Network Based on Signal Reconstruction

  • Zhijie Liu
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.377-384
    • /
    • 2023
  • The existence of abnormal breakpoint data leads to poor channel balance in wireless sensor networks (WSN). To enhance the communication quality of WSNs, a method for positioning abnormal breakpoint data in WSNs on the basis of signal reconstruction is studied. The WSN signal is collected using compressed sensing theory; the common part of the associated data set is mined by exchanging common information among the cluster head nodes, and the independent parts are updated within each cluster head node. To solve the non-convergence problem in the distributed computing, the approximate term is introduced into the optimization objective function to make the sub-optimization problem strictly convex. And the decompressed sensing signal reconstruction problem is addressed by the alternating direction multiplier method to realize the distributed signal reconstruction of WSNs. Based on the reconstructed WSN signal, the abnormal breakpoint data is located according to the characteristic information of the cross-power spectrum. The proposed method can accurately acquire and reconstruct the signal, reduce the bit error rate during signal transmission, and enhance the communication quality of the experimental object.

Simultaneous Optimization for Robust Parameter Design Using Signal-to-Noise Ratio

  • Kwon, Yong Man
    • 통합자연과학논문집
    • /
    • 제13권3호
    • /
    • pp.92-96
    • /
    • 2020
  • Taguchi's robust parameter design is an approach to reduce the performance variation of quality characteristics in products and processes. In robust design, the signal-to-noise ratio (SN ratio) was used to find the optimum condition to minimize the variation of quality characteristics as much as possible and bring the average of quality characteristics closer to the target value. In this paper, we propose a simultaneous optimization method based on a linear model of the SN ratio as a method to find the optimal condition of the control factor in case of multi-characteristics. In addition, the proposed method and the existing method were compared and studied by taking actual cases.

Time- and Frequency-Domain Optimization of Sparse Multisine Coefficients for Nonlinear Amplifier Characterization

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • 제15권1호
    • /
    • pp.53-58
    • /
    • 2015
  • For the testing of nonlinear power amplifiers, this paper suggests an approach to design optimized multisine signals that could be substituted for the original modulated signal. In the design of multisines, complex coefficients should be determined to mimic the target signal as much as possible, but very few methods have been adopted as general solutions to the coefficients. Furthermore, no solid method for the phase of coefficients has been proven to show the best resemblance to the original. Therefore, in order to determine the phase of multisine coefficients, a time-domain nonlinear optimization method is suggested. A frequency-domain-method based on the spectral response of the target signal is also suggested for the magnitude of the coefficients. For the verification, multisine signals are designed to emulate the LTE downlink signal of 10 MHz bandwidth and are used to test a nonlinear amplifier at 1.9 GHz. The suggested phase-optimized multisine had a lower normalized error by 0.163 dB when N = 100, and the measurement results showed that the suggested multisine achieved more accurate adjacent-channel leakage ratio (ACLR) estimation by as much as 12 dB compared to that of the conventional iterative method.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

교차로 교통 흐름 제어 최적화에 관한 연구 (Research on optimization of traffic flow control at intersections)

  • 이추담;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.15-24
    • /
    • 2022
  • 현재 교차로에서의 보행자 교통흐름이나 비동력차 교통흐름의 신호제어에 대한 연구는 비교적 적다. 교통 흐름 신호 제어의 최적화 방안을 연구하여 보행자, 비동력차, 자동차 등의 전체적인 교통 흐름을 조화롭게 통제할 수 있게 하는 것은 교차로의 정체 상황을 개선하는 데 중요한 의의가 있다. 교차로의 교통 최적화를 위해 본 논문은 채널화 최적화와 위상 설계의 두 가지 측면에서 출발하며, 교차로에서의 충돌점의 수를 공간적, 시간적 할당으로부터 각각 감소시킨다. 고전적인 신호 타이밍 방법을 이론적 기반으로하고, 교통 여행객의 안전과 시간 적 이익 보장을 목표로 교차로의 채널화 최적화 및 신호 제어 방안을 제안한다. 자동차, 비자동차, 보행자를 객체로 하는 교차로의 채널화 및 위상 설계방법에 대해 논의하고, 교차로의 채널화 최적화 개선 방안을 제안한다. 교차로 신호제어의 다목적 최적화 모델을 구축하였으며, NSGA-II 알고리즘을 기반으로 모델을 해결하였다.

심리음향모델에 근거한 잡음 형상화 (Noise Shaping Based on Psychoacoustic Model)

  • 이진걸
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.335-336
    • /
    • 2000
  • A psychoacoustic model based noise shaping method is proposed, where noise's presence with a host signal will not be perceptually noticeable. The derivation of imperceptible noise levels from the masking thresholds of the signal involves a deconvolution associated with the spreading function in the psychoacoustic model, which results in an ill-conditioned problem. In this paper, the problem is formulated as a constrained optimization, and it is demonstrated that the solution provides noise shaping where the noise excitation level conforms to the masking thresholds of the signal.

  • PDF

간선도로 교차로의 TOD 시간계획 최적화 및 현장적용 평가 (Optimization of TIME-OF-DAY and Estimation on the Field Application for Arterial Road)

  • 이인규;이호상;김영찬
    • 대한교통학회지
    • /
    • 제29권4호
    • /
    • pp.113-123
    • /
    • 2011
  • 최근에 활발히 진행된 ITS사업과 신호개선사업으로 인해 신호제어 시스템의 온라인화와 실시간 신호제어시스템이 도입되어 교통신호제어기의 첨단화가 진행되었다. 하지만 실시간 신호제어 운영변수 산정의 기초가 되고, 현재 가장 일반적으로 이용되는 신호교차로의 제어방법으로 사용되는 TOD제어의 운영을 위한 효과적인 신호시간계획을 위한 방법론이 부재되어 왔다. TOD 시간계획의 최적화를 수행하는 과정은 신호교차로의 효율성 제고를 위해 매우 중요한 작업이며, 최적화 수행과정의 정립이 필요한 실정이다. 본 연구에서는 TOD 시간계획 작성 시 가장 선행되어야 할 Sub Area 결정 방법과 첨두시와 비첨두시의 시간 경계를 결정하는 방법론에 대해서 정의하고, 각 방법론에 의해 결정된 시간경계 구간의 신호제어 변수를 신호최적화 모형을 통해 산출하였다. 최적화된 신호제어 변수의 효과를 분석하기 위해 서울시의 동2로 간선도로 구간에 새로운 TOD 시간계획을 적용하고 필드테스트를 수행하였으며, 이러한 TOD 시간계획의 적용 효과를 사전/사후 분석을 통해 검증하였다.

최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선 (The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.