• Title/Summary/Keyword: Signal Location

Search Result 1,298, Processing Time 0.029 seconds

Comparison of the Effect of the Interpolation Function on the Performance of the Noise Source Imaging Technology (소음원 영상화 기술의 성능에 보간 함수가 미치는 영향 비교)

  • Park, Kyu-Chil;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.268-274
    • /
    • 2016
  • To find the location of a random noise source present in the three-dimensional space is required at least four microphones. Using four microphones distributed in a three-dimensional space, noise source imaging technique was applied and evaluated on their performance. To compensate resolution problem which comes from both the position of the sensor array is fixed and the sampling frequency is low, up-sampling technique and interpolation function were applied. Five different interpolation methods were applied such as zero-padding, zero-order hold, first-order hold, spline function, and random signal padding. The up-sampling rate were chosen by two, four, eight times, and counting up 16 times. As a result, it was possible to more accurately estimate the position of the noise source according to the higher of the up-sampling rate. It also found that the first-order hold and the spline function's performance were slightly falling relative to other methods.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Evaluation for Optimal HUD Location on a Train Using EEG (뇌파를 이용한 열차 최적의 HUD위치 평가)

  • Wang, Chang-Won;Kim, Yong-Kyu;Min, Se-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.985-993
    • /
    • 2014
  • This paper suggested a new evaluation method for optimal HUD position through a correlation based on between biological signal as and statistical analysis which using (Electroencephalogram, EEG) and ANOVA. This experiment was conducted two kinds of method to evaluate the optimal HUD position. At first, visual stimulus suggested from six different positions(the top and the bottom of the left, the top and the bottom of the center and the top and the bottom of the right on the screen) in laboratory and an object image was shown for 30 seconds in a screen which has $235{\times}197cm2$ size. And second, HUD image was configured from three different positions and an object image was shown for 30 seconds in a screen. EEG, which used ${\alpha}$-wave and ${\beta}$-wave for evaluate an emotional stability, were measured from Fp1, Fp2, F7 and F8 channel based on ten to twenty electrode system. From the result in laboratory, F7 ${\beta}$-wave was shown statistically significant to significance probability of 0.006 and between ${\alpha}$-wave and ${\beta}$-wave were showed a negative correlation(r=-0.190). Also, Both the top of left and the bottom of center were showed lower ${\beta}$-wave than the bottom of right. From the result in railway simulator, Fp1 ${\beta}$-wave was appeared statistically significant as significance probability of 0.033 and it was showed lower ${\beta}$-wave than center. The outcome of this study will be helpful about evaluation of optimal HUD position through correlation between alpha wave and beta wave.

VLC Based Positioning Scheme in Vehicle-to-Infra(V2I) Environment (차량-인프라간 가시광 통신 기반 측위 기술)

  • Kim, Byung Wook;Song, Deok-Weon;Lee, Ji-Hwan;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.588-594
    • /
    • 2015
  • Although GPS technology for location positioning system has been widely used, it is difficult to be used in intelligent transport systems, due to the large positioning error and limited area for receiving radio signals. Thanks to the rapid development of LED technology, LED lights become popular in many applications. Especially, visible light communications (VLC) has raised a lot of interests because of the simultaneous functioning of LED illumination and communication. Recent studies on positioning system using VLC mainly focused on indoor environments and still difficult to satisfy positioning accuracy and simple implementation simultaneously. In this paper, we propose a positioning system based on VLC using the coordinate information of LEDs installed on the road infrastructure. Extracting the LED signal, obtained through VLC, from the easily accessible camera image, it is possible to estimate the position of the car on the road. Simulation results show that the proposed scheme can achieve a high positioning accuracy of 1 m when large number of pixels is utilized and the distance from the LED light is close.

Exploring Requirements of the Smart Textiles for Bio-Signal Measurement Based on Smart Watch User Sensibility (스마트워치 사용자감성에 기반한 생체신호측정용 스마트 텍스타일의 요구조건 탐색)

  • Jang, Eunji;Kim, Inhwan;Lee, Eu-Gene;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.89-100
    • /
    • 2017
  • Since smart devices are able to efficiently provide information without barriers of time and location, they are widely utilized with advent of the hyper-connected society. Especially, the smart devices have been developed in the form of wearable devices for mutual interaction between human and objects. Smart clothing, which embeds smart devices within clothes, measures and obtains a variety of bio-signals as it is in close contact with the human bodies. Conventional smart clothing generated wearers' discomfort because they were developed by simple attachment of electronic devices to clothes. Therefore, it is highly recommended to develop novel smart clothing based on smart textiles which integrate electronic devices as parts of textiles. As smart watches are currently the most available wearable devices in the market, smart watch users were selected in this study, for the purpose of investigating core needs of wearable smart device users based on the user experience and user's sensibility. Qualitative research was performed through semi-structured interview in order to obtain detailed answers about user sensibility based on smart watch user experience. After the in-depth interview, the user's sensibility was categorized into four aspects; functional, aesthetic, social, and empirical. Sensibility adjectives and key words were assigned to each aspect and their frequency was analyzed. It was the functional aspect of sensibility that the wearable device users require the most. The results of this study will be utilized as a fundamental data to develop the smart textiles required for the next generation of smart clothing which is attracting as a future wearable device.

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Development of the Radiological Range of Positron Emitting Radionuclides (양전자 방출 핵종의 방사선학적 비정에 대한 제안)

  • Jang, Dong-Gun;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.849-853
    • /
    • 2021
  • PET images used in medical diagnoses are created using positron emitting radionuclides. The radiation used for imaging is generated at 0.511 MeV by p-annihilation. The CSDA range is the distance the particle radiation flew physically, and it is different from the range shown in PET images. This study proposes a novel method that uses radiological criteria to measure this range. The experiment was conducted by applying the MCNP6 simulation to positron emitting nuclides 18F, 11C, 13N, and 15O. Radiological criteria were based on the location of the p-annihilation event, which is also the image signal. Results showed the radiological range of positrons to be 2.3, 3.9, 5.0, and 7.9 mm for 18F, 11C, 13N, and 15O, respectively. The higher the positron energy, the larger its difference from the CSDA range. Positron emitting nuclide is being developed and studied as a nuclide for dosimetry or radiotherapy. Further research needs to be conducted into various positron ranges.

Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe (실내 실험을 통한 소형 모형 원형 강관의 동적 반응 평가)

  • Song, Jung Uk;Lee, Jong-Sub;Park, Min-Chul;Byun, Yong-Hoon;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.81-92
    • /
    • 2018
  • For a marine bridge foundation construction, a large-circular-steel-pipe has been proposed for supporting vertical load and preventing water infiltration. However, a ship collision can adversely affect the structural stability. This paper presents a fundamental study on dynamic responses of the large-circular-steel-pipe by an impact load. In laboratory experiments, small-scaled steel pipe is installed in a soil tank. The soil height and water level are set to 23 cm and 25~70 cm, respectively. The upper part of the steel pipe is impacted using a hammer to simulate the ship collision. The dynamic responses are measured using accelerometers and strain gauges. Experimental results show that the strain decreases as the measured location is lowered. The higher frequency components appear in the impact load condition compared to the microtremor condition. However, the higher frequency components measured at the strain gauge located below the water level do not appear. For the accelerometer signal, the maximum frequency under the impact load is higher than that of the microtremor. The maximum frequency decreases as water level increases but it is larger than the maximum frequency of the microtremor. This study shows that strain gauge and accelerometer can be useful for evaluating the dynamic responses of large-circular-steel-pipes.