• Title/Summary/Keyword: Signal Jamming

Search Result 261, Processing Time 0.027 seconds

A Study to Efficiently Overcome GPS Jamming and GPS Spoofing by using Data Link System (데이터링크를 사용하는 체계에서 GPS 재밍(Jamming)과 GPS 기만(Spoofing)을 효과적으로 극복하기 위한 방안 연구)

  • Jee, Seungbae;Kim, Sangjun;Lee, Jungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • These days many systems use the gps signal to get their own position. Because it's cheap and accurate and convenient. But, the strength of gps signal is very weak and can be easily interrupted by GPS jamming and GPS spoofing. Normally, fighter can use DME, TACAN, etc to correct their position error when GPS is not working. But, many aircraft which does not have those kinds of hardware need to pay additional cost to get it. In this paper, we propose how to overcome GPS jamming and GPS spoofing by only using data link system. The main purpose of this paper is to make the data link protocol to get an exact position information of own unit at gps error environment.

A Method Eliminating the Interference Signal for the Test of the Radar Electronic Protection Performance (레이더 전자보호 성능시험을 위한 송.수신 간섭신호 제거 기법)

  • Jung, Hoi-In;Lee, Sung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.569-576
    • /
    • 2010
  • Jamming simulator has developed for the purpose of the test and evaluation on the electronic protection capabilities of the tracking radar onboard ship. This simulator has the capabilities to generate and radiate the jamming signals against the radar as well as those to receive, analyze and identify the radar signals at a real sea environment. The limited space of ship superstructure has led to the serious distortion caused by the ring around phenomenon that some sidelobes of the jamming beams were coming back to the receiving antenna. In this paper, we have proposed the methods to eliminate the ring around. First, we have inserted the groove metal screen between transmitting and receiving antennas. Second, we have used the PRI(Pulse Repetition Interval) tracking loop to control the switching timing of the input radar and the output jamming signal. Finally, we have demonstrated the performance and effectiveness of the proposed methods through the sea trial.

Secrecy Performance of Multi-Antenna Satellite-Terrestrial Relay Networks with Jamming in the Presence of Spatial Eavesdroppers

  • Wang, Xiaoqi;Hou, Zheng;Zhang, Hanwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3152-3171
    • /
    • 2022
  • This work investigates the physical layer secrecy of a multi-antenna hybrid satellite-terrestrial relay networks (HSTRN) with jamming, in which a satellite aims to make communication with a destination user by means of a relay, along with spatially random eavesdroppers. In order to weaken the signals of eavesdroppers, the conventional relay can also generate intentional interference, besides forwarding the received signal. Shadowed-Rician fading is adopted in satellite link, while Rayleigh fading is adopted in terrestrial link, eavesdropper link and jamming link. The analytical and asymptotic formulas for the system secrecy outage probability (SOP) are characterized. Practical insights on the diversity order of the network are revealed according to the asymptotic behavior of SOP at high signal-to-noise ratio (SNR) regime. Then, analysis of the system throughput is examined to assess the secrecy performance. In the end, numerical simulation results are presented to validate the theoretical analysis and point out: (1) The secrecy performance of the considered network is affected by the channel fading scenario, the system configuration; (2) Decrease of the relay coverage airspace can provide better SOP performance; (3) Jamming from the relay can improve secrecy performance without additional network resources.

A hidden anti-jamming method based on deep reinforcement learning

  • Wang, Yifan;Liu, Xin;Wang, Mei;Yu, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3444-3457
    • /
    • 2021
  • In the field of anti-jamming based on dynamic spectrum, most methods try to improve the ability to avoid jamming and seldom consider whether the jammer would perceive the user's signal. Although these existing methods work in some anti-jamming scenarios, their long-term performance may be depressed when intelligent jammers can learn user's waveform or decision information from user's historical activities. Hence, we proposed a hidden anti-jamming method to address this problem by reducing the jammer's sense probability. In the proposed method, the action correlation between the user and the jammer is used to evaluate the hiding effect of the user's actions. And a deep reinforcement learning framework, including specific action correlation calculation and iteration learning algorithm, is designed to maximize the hiding and communication performance of the user synchronously. The simulation result shows that the algorithm proposed reduces the jammer's sense probability significantly and improves the user's anti-jamming performance slightly compared to the existing algorithms based on jamming avoidance.

DIRCM Jamming Effect Analysis of Spin-Scan Reticle Seeker (스핀스캔 레티클 탐색기의 DIRCM 재밍효과 분석)

  • Ahn, Sang-Ho;Kim, Young-Choon;Lee, Kwang-Sei;Kim, Ki-Hong;Kim, Sung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.776-784
    • /
    • 2009
  • The function of DIRCM(Directed Infrared Countermeasures) jamming is to cause the missile to miss its intended target by disturbing the seeker tracking process. The DIRCM jamming uses the pulsing flashes of IR energy and its frequency, phase and intensity have influence on the missile guidance system. In this paper, we analysis the DIRCM jamming effect of spin-scan reticle seeker. Simulation results show that the jamming effect is greatly influenced by frequency, phase and intensity of the jammer signal.

IRCM Jamming Effect Analysis of a Stationary Reticle Seeker (고정 레티클 탐색기의 IRCM 재밍효과 분석)

  • Ahn, Sang-Ho;Kim, Young-Choon;Lee, Kwang-Sei;Kim, Ki-Hong;Kim, Sung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.304-312
    • /
    • 2010
  • The function of IRCM(Infrared Countermeasures) jamming is to cause the missile to miss its intended target by disturbing the seeker tracking process. This paper analyzes the jamming effect of IRCM jamming for a stationary reticle seeker. The phase error containing the azimuth angle information of target is analyzed for the intensity, frequency and duty ratio variation of the jammer pulse signal. We confirmed that the more the jammer frequency is similar to the spinning frequency of the stationary seeker, the more jamming effect is high.

A Basic Study on the Jamming Mechanisms and Characteristics against GPS/GNSS Based on Navigation Warfare

  • Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • It has been recognized that the risk from the vulnerability of GPS can lead to the extreme damage in the infrastructure of the civil and military in recent years. As an example, the intentional interference to GPS signal, named GPS jamming, was really performed to misguide GPS guided weapons during Iraq war in 2003, and the fact has also followed by the serious issues on GPS in civilian community. In the modernized military society, the navigation warfare(NAVWAR) based on the GPS jamming has been emerged and introduced as a military operation. The intentional interference to the future global navigation satellite system(GNSS) involving GPS must be also an important issue to civilian users in near future. This study is focused on the fundamental research prior to the research on "Potential principle of NAVWAR" under NAVWAR of the future warfare. In this paper, we would study on the investigation of NAVWAR based on electronic warfare(EW) and analyze characteristics of the jamming against GNSS's receivers. Then the general mechanism on GNSS jamming is proposed.

Power allocation-Assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers

  • Nayak, V. Narasimha;Gurrala, Kiran Kumar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.758-768
    • /
    • 2021
  • In this work, the secrecy of a typical wireless cooperative dual-hop non-orthogonal multiple access (NOMA)-enabled decode-and-forward (DF) relay network is investigated with the impact of collaborative and non-collaborative eavesdropping. The system model consists of a source that broadcasts the multiplexed signal to two NOMA users via a DF relay, and information security against the eavesdropper nodes is provided by a helpful jammer. The performance metric is secrecy rate and ergodic secrecy capacity is approximated analytically. In addition, a differential evolution algorithm-based power allocation scheme is proposed to find the optimal power allocation factors for relay, jammer, and NOMA users by employing different jamming schemes. Furthermore, the secrecy rate analysis is validated at the NOMA users by adopting different jamming schemes such as without jamming (WJ) or conventional relaying, jamming (J), and with control jamming (CJ). Simulation results demonstrate the superiority of CJ over the J and WJ schemes. Finally, the proposed power allocation outperforms the fixed power allocation under all conditions considered in this work.

Performance Analysis of Beam Steering Algorithm According to the Signal Separation (신호 이격도에 따른 빔 제어 알고리즘 성능 분석)

  • Yun, Seonhui;Oh, Jongchan;Kim, Jun O;Nam, Juhun;Choi, Sangwook;Ahn, Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1023-1030
    • /
    • 2014
  • Beam steering algorithms using array antenna are mainly used in such a manner as anti-jamming method. However, the performance is changed according to the position of signals despite the same number of signals and the same received power. In this paper, we analyzed the effect of the position relationship of the signals on the performance of the beam steering algorithms. Therefore, we defined 'signal separation' as the minimum angle of the interference signals and the desired signal, and analysed the relationship between the C/N0 performance of beam steering algorithms as LCMV/PM and the signal separation. For simulation, we set many GPS signals and jamming signals compared to the degrees of freedom. And changed the position and the height of the receiver in order to obtain various signal separation angles. In addition, we examined the effects of signal separation and JSR on the anti-jamming performance by applying the loss factors of the received power. Through the research, there is a tendency that the performance of beam steering algorithms is increased with the increase of the signal separation, and signal separation is more severely affecting on the anti-jamming performance compared to the number of signals and JSR.

Distance error of monopulse radar in cross-eye jamming using terrain bounce (지형 바운스를 이용하는 크로스 아이 재밍의 모노펄스 레이다 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.9-13
    • /
    • 2022
  • In this paper, the tracking error of monopulse radar caused by cross-eye jamming using terrain bounce is analyzed. Cross-eye jamming is a method of generating an error in a radar tracking system by simultaneously transmitting two signals with different phases and amplitudes. When the monopulse radar receives the cross-eye jamming signal generated by the terrain bounce, a tracking error occurs in the elevation direction. In the presence of multipath, this signal is a combination of the direct target return and a return seemingly emanating from the target image beneath the terrain surface. Terrain bounce jamming has the advantage of using a single jammer, but the space affecting the jamming is limited by the terrain reflection angle and the degree of scattering of the terrain. This study can be usefully used to protect ships from low-altitude missiles or aircraft in the sea.