• Title/Summary/Keyword: Signal Evaluation

Search Result 1,921, Processing Time 0.035 seconds

Development of Absolute Position Detecting Cylinder and Evaluation under the Load Disturbance (절대위치 검출형 실린더 개발 및 외란 부하에 대한 성능평가)

  • 김성현;박민규;홍영호;이민철;이만형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.68-75
    • /
    • 2003
  • This paper introduces the development of hydraulic cylinder with magnetic sensors detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position with a little displacement by using algorithm for recognizing datum points, 114 divider algorithm and high precision algorithm improved position precision. We alse evaluate the developed system under the load disturbance and add band pass filter to the previous's signal process circuit for the protecting magnetic sensors's saturation.

Time Reversal Beam Focusing of Ultrasonic Array Transducer on a Defect in a Two Layer Medium

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • The ability of time reversal techniques to focus ultrasonic beams on the source location is important in many aspects of ultrasonic nondestructive evaluation. In this paper, we investigate the time reversal beam focusing of ultrasonic array sensors on a defect in layered media. Numerical modeling is performed using the commercially available software which employs a time domain finite difference method. Two different time reversal approaches are considered - the through transmission and the pulse-echo. Linear array sensors composed of N elements of line sources are used for signal reception/excitation, time reversal, and reemission in time reversal processes associated with the scattering source of a side-drilled hole located in the second layer of two layer structure. The simulation results demonstrate the time reversal focusing even with multiple reflections from the interface of layered structure. We examine the focusing resolution that is related to the propagation distance, the size of array sensor and the wavelength.

Life Evaluation of CrN Coatings due to Wear Using Friction and Acoustic Emission Sensor (마찰 및 음향방출 신호를 이용한 CrN 코팅의 마모수명 평가)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.328-334
    • /
    • 1999
  • Acoustic emission (AE) sensor was used to evaluate the wear-life of CrN-coated steel disks with 1 $\mu\textrm{m}$ and 4 $\mu\textrm{m}$ coating thickness. The relationship between Af and friction signal from scratch test and sliding test was investigated. The first spatting of CrN film was detected by AR signals in the early stage of coating failures, and overall failures by friction signals. Therefore, the conservative design for coating-life should be done using the results of AE signals. Using the percent contact load, the ratio of sliding normal load to the critical scratch load and the number of cycles to failure was measured to predict the wear-life of CrN film. On the wear-life dia-gram the percent contact loads and the number of cycles to failure showed a good linear relationship on the log coordinate. As the load percentage was decreased, the diagram showed that the wear-limits, at which the coated steels survived more than 35,000 cycles, were about 4∼5% of the critical scratch loads.

Elastic modulus measurement of thin films using laser generated guided ultrasonic waves (레이저 초음파 기법을 이용한 박막 탄성계수 측정)

  • Cho, Seung Hyun;Heo, Taehoon;Ji, Bonggyu;Ahn, Bongyoung;Jang, Gang-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.550-554
    • /
    • 2014
  • Regarding thin films in MEMS/NEMS structures, the exact evaluation of mechanical properties is very essential to enhance the reliability of their design and manufacturing. However, such methods as a tensile test and a resonance test, general methods to measure elastic moduli, cannot be applied to thin films since its thickness is so small. This work concerns guided wave based elastic modulus measurement method. To this end, guided wave excitation and detection system using a pulsed laser and a laser interferometry has been established. Also an elastic modulus extraction algorithm from the measured guided wave signal was developed. Finally, it was applied to actual thin film structures such as Ni-Si and Al-Si multilayers. From experimental results, we confirm that the proposed method has considerable feasibility to measure elastic properties of thin films.

  • PDF

Evaluation of idle vibration beated by cooling fan imbalance (팬 작동에 따른 비팅성 아이들 진동 평가)

  • Park, Jinhan;Ahn, Sejin;Jeong, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.247-249
    • /
    • 2014
  • The beating phenomenon occurs because of various causes, when idle vibration was happened. In this study, the beating phenomenon was divided into several parameters and controlled by the parameter. It was hypothesized that the beating parameter is related to discomfort of idle vibration. The three-down one-up method was performed for evaluating discomfort of controlled vibrations, which is widely used in the field of psychophysics. As a result in pilot test, a subject responds beating vibration more discomfort than normal idle vibration. In the future, the study will be implemented to know how much the parameters of beating signal affect to the discomfort at idle vibration in passenger vehicle.

  • PDF

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves

  • Yuan, Maodan;Kang, To;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.656-664
    • /
    • 2011
  • In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress.

Hybrid Deinterlacing Algorithm with Motion Vector Smoothing

  • Khvan, Dmitriy;Jeon, Gwanggil;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.262-265
    • /
    • 2012
  • In this paper we propose a new deinterlacing method with block classification and motion vector smoothing. The proposed method classifies a block, then depending on the region it belongs to, the motion estimation or line averaging is applied. To classify a block its variance is calculated. Then, for those blocks that belong to simple non-texture region the line averaging is done while motion estimation is applied to complex region. The motion vector field is smoothed using median filter what yields more accurate interpolation. In the experiments for the subjective evaluation, the proposed method bas shown satisfying results in terms of computation time consumption and peak signal-to-noise ratio. Due to the simplicity of the algorithm computation time was drastically decreased.

  • PDF

An Evaluation of Driving Fatigue on Long-term Driving (운전 시간에 따른 피로도의 변화)

  • 김선웅;성홍모;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.177-180
    • /
    • 2002
  • The type of physiological stress involved in driving is probably complex, and a comprehensive study involving recording of physiological signals such as electrocardiogram(ECG), electromyogram(EMG). Changes in relevant Physiological parameters, such as ECG, EMG, reflected changes in driver status. In order to derive the mental and physical load of driving a motor vehicle from driving behaviour alone it is necessary to establish the relationship between changes in a driver's physiological parameters and behavioral parameters. In this study, we choose two different condition and investigated driver's status using HRV analysis method. Many previous studies have shown that increasing driving time causes a variation of HRV signal.

  • PDF

Evaluation of Concentration using Phsiological Signal during Mental Arithmetic Task (생리신호를 이용한 연산작업시의 집중도의 평가)

  • 윤용현;고한우;김동윤;양희경;김묘향
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.210-214
    • /
    • 2002
  • 집중도 변화와 정신피로는 정의 방향의 평가와 부의 방향의 평가가 있으며, 작업 수행시의 집중변화와 정신피로의 평가는 정의 방향보다 부의 방향으로의 평가가 용이하다. 따라서, 저자들은 먼저 피험자에게 부가할 정신작업부하로 난이도 조정이 용이한 연산작업을 사용하여 작업수행시 가장 높은 집중을 요구하는 하나의 난이도를 선정하고 피험자에게 반복 수행시키면서 생리량과 심리량을 동시에 측정하였다. 측정된 생리량은 뇌파, 심전도, 호흡, 맥파, 말초피부온이며 심리량은 저자들이 개발한 정신피로설문지를 사용하였다. 분석결과 작업수행시 심박변화율의 전력스펙트럼 MF/(LF+HF)비가 감소하였으며, 작업이 반복됨에 따라 집중이 저하되고 정신피로가 증가하였다. 특히, 뇌파의 beta파와 호흡간격이 집중도의 변화를 말초피부온이 정신피로를 잘 반영하였다.

  • PDF