• Title/Summary/Keyword: Signal Detection Probability

Search Result 243, Processing Time 0.028 seconds

Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth (능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용)

  • 박재은;김재수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF

Comparison of Detection Probability for Conventional and Time-Reversal (TR) Radar Systems

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2012
  • We compare the detection probabilities of the time-reversal(TR) detection system and the conventional radar system. The target is assumed to be hidden inside a random medium such as a forest. We propose a TR detection system based on the SAR(Synthetic Aperture Radar) algorithm. Unlike the conventional SAR images, the proposed TR-SAR system has an interesting property. Specifically, the target-related signal components due to the time-reversal refocusing characteristics, as well as some of clutter-related signal components are concentrated at the time-reversal reference point. The remaining clutter-related signal components are scattered around that reference point. In this paper, we model the random media as a collection of point scatterers to avoid unnecessary complexities. We calculate the detection probability of the TR radar system based on the proposed simple random media model.

Target Detection probability simulation in the homogeneous ground clutter environment

  • Kim, In-Kyu;Moon, Sang-Man;Kim, Hyoun-Kyoung;Lee, Sang-Jong;Kim, Tae-Sik;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.8-16
    • /
    • 2005
  • This paper describes target detection performance of millimeter wave radar that exits on non-stationary target detection schemes in the ground clutter conditions. The comparison of various CFAR process schemes such as CA(Cell-Average)-CFAR, GO(Greatest Of)/SO(Smallest Of)-CFAR, and OS(Order Statistics)-CFAR performance are applied. Using matlab software, we show the performance and loss between target detection probability and signal to noise ratio. This paper concludes the OS-CFAR process performance is better than any others and satisfies the optimal detection probability without loss of detection in the homogeneous clutter, When range bins increase.

Detection Probability Improvement Scheme Optimized for Frequency-Hopping Signal Detection (주파수 도약 신호 탐지에 최적화된 탐지 확률 향상 기법)

  • Lee, In-Seok;Oh, Seong-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.783-790
    • /
    • 2018
  • The frequency-hopping technique is one of the spread-spectrum techniques. Frequency hopping is a communication system in which the carrier frequency channel is hopped within the wideband. Therefore, a frequency-hopping system has such advantages as antijamming and low probability of intercept. This system is often used in military communications. Because frequency-hopping signal detection is difficult, it is an important research issue. A novel detection technique is proposed that can improve detection probability. When the received signal is transformed to a frequency domain sample by fast Fourier transform, spectral leakage lowers the detection probability. This problem can be solved by using the Hamming window, and the detection probability can be increased. However, in a frequency-hopping environment, the windowing technique lowers the detection probability. The proposed method solves this weakness. The simulation results show that the proposed detection technique improves the detection probability by as much as 13 %.

Detection Probability as a Symbol Synchronization Timing at the Lead of Each Received Delay OFDM Signal in Multipath Delay Profile (멀티패스 지연프로필의 각 수신지연파의 선두에서 OFDM 신호의 심벌 동기타이밍으로의 검출확률)

  • Joo, Chang-Bok;Park, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • In this paper, we represent the maximum detection probability formulas of symbol synchronization timing at each received delay signal in multipath channel delay profile in the multiplied correlation and difference type correlated symbol synchronization timing detection method. The computer simulation results show that the correlation symbol timing detection method have maximum detection probability at the lead of received delay signal of highest amplitude, but the difference type of correlation symbol timing detection method always have maximum detection probability at the lead of first received delay signal in the multipath channel models. Using this results, we show the BER characteristics difference between the IEEE802.11a OFDM signals which is obtained in case of the symbol synchronization timing is taken at zero error(perfect) timing position and at -1 sample error symbol timing position from perfect timing position in the multipath channel models regardless the length of channel delay spread.

A New Formula to Predict the Exact Detection Probability of a Generalized Order Statistics CFAR Detector for a Correlated Rayleigh Target

  • Kim, Chang-Joo
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • In this paper we present a new formula which can predict the exact detection probability of a generalized order statistics (GOS) constant false alarm rate (DFAR) detector for a partially correlated Rayleigh target model (0 < $ \rho$< 1) in a closed form, where $\rho$ is the correlation coefficient between returned pulses. By simply substituting a set of specific coefficient into the derived formula, one can obtain the detection probability of any kind of CFAR detector. Detectors may include the order statistics CFAR detector, the censored mean level detector, and the trimmed mean CFAR detector, but are not necessarily restricted to them. The numerical result for the first order Markov correlation model as applied to some of the detectors shows that as $\rho$ increases from zero to one, higher signal-to-noise ratio is required to achieve the same detection probability.

  • PDF

Optimal Sensor Placement in Multistatic Sonar (다중 상태 소나의 최적 수신망 배치)

  • Lee, Kwang-Hee;Han, Dong-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-634
    • /
    • 2012
  • It is very important to place receiver in multistatic sonar. Inefficient placement of the receiver reduce detection probability and to increase the probability of detection should be used more receivers. Therefore, detection of targets in searching area, detection performance of limited receiver depends on how to place. Through the optimized receiver placement, detection area between each sonar as much as possible avoid duplication, as optimization, the minimum receiver can be maintained detection performance. In this paper we prove mathematical verification of maximum signal excess value based on sonar placement and we calculate a signal excess value by using computer simulations and suggest optimal sonar placement.

Performance Characteristics of a Symbol Timing Detection by Superposed Difference Method for OFDM (중첩의 차분화방식에 의한 OFDM 심벌 타이밍검출 성능)

  • Joo, Chang-Bok;Park, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.46-54
    • /
    • 2007
  • In this paper, we introduce the performance of improved symbol timing detection by the superposed difference type symbol timing detection method in the OFDM system. Also, we represent the maximum detection probability of symbol synchronization timing at each received delay signal in multipath channel delay profile in the correlation and difference type symbol timing detection methods. The computer simulation results show that the correlation symbol timing detection method have maximum detection probability at the lead of the nth received delay signal of highest amplitude, but the difference type symbol timing detection method always have maximum detection probability at the lead of the first received delay signal in the channel delay spread of $70nsec{\sim}217nsec$. The simulation results indicate the possibility of the perfect detection of OFDM symbol synchronization timing and it fit well with the results of improved S/N to the eb/n0 and the performance of symbol timing detection of the proposed method.

Extended Early-Late Phase Scheme using Combined Pseudo-Random Noise Signal to Detect GPS Repeat-Back Jamming Signals (GPS 재방송 재밍신호 검출을 위한 통합 의사잡음신호를 사용한 확장된 ELP 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • This paper proposes a repeat-back jamming signal detection scheme that utilizes a combined pseudo random noise signal that is effective for processing a global positioning system (GPS) repeat-back jamming signal with the early minus late phase scheme to alleviate any existing multipath signal detection. The proposed scheme uses the combined pseudo random noise signal to treat repeat-back jamming signals like similar multipath signals and can effectively detect a repeat-back jamming signal by applying the early minus late phase scheme to a combined pseudo random noise signal. Through a Monte-Carlo simulation, the detection probability of the proposed scheme is better than the one of the conventional scheme under low jamming to signal power ratio.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.