ETRI Journal, volume 16, number 2, July 1994

15

A New Formula to Predict the Exact
Detection Probability of a Generalized
Order Statistics CFAR Detector

for a Correlated Rayleigh Target
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ABSTRACT

In this paper we present a new formula
which can predict the exact detection
probability of a generalized order statistics
(GOS) constant false alarm rate (CFAR) de-
tector for a partially correlated Rayleigh tar-
get model (0 < p < 1) in a closed form,
where p is the correlation coefficient be-
tween returned pulses. By simply substi-
tuting a set of specific coefficient into the”
derived formula, one can obtain the detec-
tion probability of any kind of CFAR detec-
tor. Detectors may include the order statis-
tics CFAR detector, the censored mean level
detector, and the trimmed mean CFAR de-
tector, but are not necessarily restricted to
them. The numerical result for the first or-
der Markov correlation model as applied to
some of the detectors shows that as p in-
creases from zero to one, higher signal-to-
noise ratio is required to achieve the same
detection probability.
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I. INTRODUCTION

One of the most important problems in
designing radar systems is the automatic de-
tection of targets under varying environments.
Since the background level is unknown and
time-varying at any given location, the radar
detector with a fixed threshold cannot be ap-
plied to the radar returns if one wants to control
the false alarm rate. The constant false alarm
rate (CFAR) detection technique is employed
to control the false alarm rate, which estimates
the background level and sets the threshold
adaptively based on the local information of
background level. The objective of the CFAR
design is to provide detection threshold that is
relatively immune to the varying background
level and allow target detection with a CFAR.

Kanter [1] studied the detection perfor-
mance of a noncoherent integration detec-
tor accumulating M correlated pulses from
a Rayleigh target (0 < p < 1), but his work
18 limited only to radar detectors with fixed
threshold. As mentioned above, radar detec-
tors having fixed threshold cannot maintain
CFAR. Kim et al. [2], [3] proposed and an-
alyzed a CFAR detector based on generalized
order statistics (GOS), which is known as the
GOS CFAR detector. However, their work
deals with target returns with completely corre-
lated (p = 1) pulses or completely uncorrelated
(p =0) pulses.

In this paper, we extend the analysis of the
GOS CFAR detector treated in [2], [3] to a
correlated Rayleigh target model. As will be
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shown later, the GOS CFAR detector may be
interpreted as a generalization of various other
forms of order statistics (OS) CFAR detectors.
By properly choosing its filter (GOS filter) co-
efficients, the GOS CFAR may become the OS
CFAR detector [4], the trimmed mean (TM)
CFAR detector [5], the censored mean level de-
tector (CMLD) [6] or the cell averaging (CA)
CFAR detector [7]. Thus, detection perfor-
mances of these special case detectors for a
correlated Rayleigh target model may be ob-
tained by analyzing the GOS CFAR detector
for the same target model, as shown in this pa-
per.

This paper is organized as follows. Section
Il describes various target models considered
in this paper. Section IIl derives expression for
probabilities of detection and false alarm for a
correlated Rayleigh target. Section IV presents
analytical results and discussions. Conclusions

are given in Section V.

I[I. TARGET MODEL
DESCRIPTIONS

We introduce here some features of the
Swerling target models as well as the correlated
Rayleigh target model, which are essential in
developing this paper.

1. Swerling Target Model

Swerling target models are well known for
the radar detection [8]. They are based on
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four different models of target fluctuation and
may be described by two different probabil-
ity distributions with two different forms of
fluctuation. When the target signal is con-
structed from many independently positioned
scatterers, the resulting (received) signal on
the radar cross section may be described by a
Rayleigh distribution. Also, when the reflected
signal contains a dominant constant compo-
nent in addition to a Rayleigh distributed ran-
dom component, the received signal can be de-
scribed by a chi-square distribution with four
degrees of freedom. As for the fluctuation, two
cases are considered: scan-to-scan fluctuation
and pulse-to-pulse fluctuation. The former as-
sumes that the returned pulses in one scan are
completely correlated (p = 1) and corresponds
to Swerling I and III cases. The latter assumes
that the returned pulses completely uncorre-
lated (p =0) and thus corresponds to Swerling
Il and IV cases. '

Equations we introduce in this section ap-
peared previously in [1], (9]. To facilitate our
discussion, we repeat them here (with our no-
tations) with appropriate notes.

The chi-square family of distribution has
been widely used to represent a fluctuating tar-
get. Let the signal-to-noise ratio (SNR) of a
single pulse at the input to the detector be S,

then the probability density function (pdf) of S
may be written

p(S)=

1 (K\* . KS
F(IT)(?) S exp(—?—),5>0 (D

where S is the average of S, K > 0 is a fluc-
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tuation parameter, representing the degree of
freedom and " (.) denotes the gamma function.
K=1,M,2,2M, and oo correspond to Swer-
ling cases I, II, III, TV [8], and the nonfluctua-
tion case, respectively.

The conditional moment generating func-
tion (mgf) of the statistic Y in Fig. 1 in the pres-
ence of a nonfluctuating target may be written

MS
MC(SIS)=(1+3)'"Mexp(—(l+s)s). )

The unconditional mgf for the chi-square fam-
ily of fluctuating targets is then given by aver-
aging (2) with respect to S using (1):
>0
m©= [ MIDpsEs
0

(1+5)K-M

()]

2. Correlated Rayleigh Target Model

@3y

The general formula of mgf for the
Rayleigh target which is partially correlated
from pulse to pulse is given [1] by

Mol =G m

oo A 2 2
[[rwon(- )
C))]

where o is the variance of Gaussian noise in-
volved in the definition of the Rayleigh target,
A is the M x 1 vector of the received signal
amplitude, and p(A) is the pdf of A. For a
correlated Rayleigh target, p(A) is generally
modeled as

exp[—(1/2a*)ATR!A]

(QJT)M/Z |52R|l/2

p(A)= &)
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Fig. 1. Block diagram of the GOS CFAR detector with noncoherent integration.

where R is the correlation matrix of A, su-
perscript 7 denotes transpose, and a2 is the
average target cross section, which is linearly
related to the target power. With some manip-
ulations, (4) becomes

1
s+ DM [R| R~ +[s/(s + D]S]|

. /'°° exp{—(1/2a*)
—o  (2m)M/2
AT® ' +1s/G+DISD ) T
[@2(R™! +[s/(s + 1)]SD)~!|1/2

1
T [(s+ DI+5sSR|

Mp(s)=

©

where I is identity matrix and § =a2/o2. Ex-
pressing the determinant in terms of nonnega-

tive eigenvalues, (6) becomes [1]

1

M = _—
)= M A Ss +11

M

where A;’s are the eigenvalues of the correlation
matrix of target returns.

Swerling I and II cases can be obtained
from (7) by choosing Ay = M and A; =0
(i =2,..., M) for the slow fluctuation case
(p=1Dand ;=1 (@G=1,..., M) for the fast
fluctuation case (p =0)

1
MR(5)pm1 = 3
R()|p=1 (s+DM-1[1+MS)s+1] ®
and 1
M == =,
R(S)IP—O [(1+S)S+1]M (9)

respectively. Equations (8) and (9) can be also
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obtained from (3) with K =1 and with K = M,
respectively.

. GOS CFAR DETECTOR FOR
A CORRELATED RAYLEIGH
TARGET

Detection of a target in noise is achieved by
hypothesis testing involving the null hypothe-
sis Hp (representing noise alone) and the alter-
native hypothesis H; (signal plus noise). The
objective of the testing is to maximize the de-
tection probability while limiting the probabil-
ity of false alarm to a desired value. Decision
is made in favor of H, or Hy such that

H
Y2TZ (10)
Hy
where Y is the test statistic of the cell under test,
T is a threshold coefficient to achieve a desired
false alarm probability for a given window size
N, and Z is the estimate of the background
level. Detection and false alarm probabilities,
denoted as Py and Py,, tespectively, may be
written '

Py = / f22) / pWdydz (1)
0 T:
and

Pfa=/0 fz(Z)/ po(y)dydz, (12)
T:

- where p;(y) (j =0,1) is the pdf of the test
statistic ¥ for the presence (j = 1) and the
absence (j = 0) of a target, respectively, and
Sfz(z) is the pdf of the random variable Z,
which is defined in (15). These two quanti-
ties may be expressed in terms of mgf [3], [9],
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[10]:

Ppo=— Zres [MO(S)ML(;E, Skojl (13)
%0 "

and

sz—Zres I:Ml(s)ﬂZ(—;@,Skl:l (14)
k1

where M;(s) (j =0, 1) is the mgf for p;(y),
sko (K0=1,2,...) and 54y (k1=1,2,...) are
the poles of My(s) and M, (s) lying in the left
half plane, respectively, Mz (—Ts) is obtained
by replacing s by —7's in the mgf of the pdf
fz(2), and res[.] denotes the residue.

A block diagram of the GOS CFAR detec-
tor with noncoherent integration is shown in
Fig. 1. The GOS CFAR processor first orders
samples of range cells according to their mag-
nitudes. Then it multiplies the ordered samples
by a set of coefficients defined by the GOS fil-
ter and sums the results to form an estimate of
the background noise level. The output Z of
the GOS filter of window size N is then [2], [3]

N
Z=3 aY (15)
i=]

where Y(;) is the i-th smallest sample among
the N samples, and «;’s, i =1,2,..., N, are
a set of constant weights that can be chosen
properly for an application. This estimate is
now multiplied by a threshold coefficient T to
yield the adaptive threshold 7 Z. The output of
the cell under test will be then compared with
this threshold 7'Z.

The main purpose of this paper is to eval-
uate the detection performance of the GOS
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CFAR detector structure shown in Fig. 1. De-
tection and false alarm probabilities of this de-
tector will be obtained with the help of (1)
through (14).
There may be (2¥ — 1) kinds of CFAR
processors obtained by combinations of «;,
= 1,2,..., N, in the GOS CFAR detec-
tor. To show the relationship between the
GOS CFAR detector and other CFAR pro-
cessors, we denote the GOS CFAR detector
as GOS(ny,ny,...,n;,...) CFAR processor,
where n; represents the position of each coeffi-
cient of the GOS filter whose value is 1. For ex-
ample, the OS(k) CFAR detector can be repre-
sented as the GOS(k) CFAR processor, the CA
CFAR detector as the GOS(1, 2, ..., N)CFAR
processor, the TM(Ty, T») CFAR detector as
the GOS(T1+1,..., N — T5) CFAR proces-
sor, and CMLD(T>) as the GOS(1, ..., N—T»)
CFAR processor. Here the trimming parame-
ters 71 and T represent the number of cells
to be trimmed from the lower and upper ends
after sorting the reference window data, re-
spectively. In this way, we can implement the
GOS CFAR detectors ranging from GOS(1)
to GOS(L,2,...,N) CFAR processor. The
GOS( ) CFAR processor does not exist because
it means Z =0.
If the background noise level is Rayleigh,

the output of the squarer X = X; is exponen-
tially distributed under Hj as

Fx(x) = ;"PH)’ x>0 (16)

otherwise.

The sum of X, say ¥ = Zle Xi, is gamma

" ticsfor {Y1, ...,
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distributed and given by

_ Y lexp(=y)
fr)= “Tp

=GB, D, y=0, =0 A7)

where £ is an integer representing the number
of x;’s summed over. Note that noncoherent
integration is done by summing M indepen-
dent and identically distributed samples from
the squarer so that the output of the integrator,
Y, is gamma distributed with 8 =M, i.e.,

Y~G(M,1). (18)

Let {Yq,...
vector in the reference window in Fig. 1,
and {Y(I), cey

, Yy} be the N-dimensional

Yvy} be the set of order statis-
Yx}. The transformation from
{ry,..., Yyl to {Y(1),...,
one.. There is a total of N! possible arrange-

Yy} is not one-to-

ments of {y(l), e
magnitude. Thus, there are N! inverses to the

, Yy} in increasing order of

transformation,
The mgf of the estimate of the background
level is then obtained to be

Mz(s) = Ez[exp(—sZ)]

N
:EY [CXp (—S Z(I,‘ Y(i))}
i=1

all N! inverses

°°d Yol texp(—=y(m))
o PO ran
%0 Yeuy exp(—yay)
X dY(N)—I:W—
¥N-1)

N
Xexp (*S Zaiy(i))

i=1
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M—-1 M—1+py

= 2 2 )

all N!inverses pv=0 py_=0
M—1+p; N M+p,——1

pa=0 i=1 M—1

N —(M+Pi+1_Pi)
x (Z(1+sa,)> (19)
Jj=i

where pyy1 = p; = 0 and all N! inverses
mean the possible transformations between
{Y1....,Yn§}and (Y, ..., Y}

Using (19) and (3) for (13), we obtain the
false alarm probability for the Swerling target
model

-1 M—14pp

o= Y Y

all N!inverses py=0 py_=0
M~l4+ps M—1 q gN-T2-1

IIDIDITEDD

pr=0 q=0¢>=0 an-1,=0
y lﬁ[ M+pivi—pi+qgi—qgiv1—1
M+piy—pi—1
(M—f‘[)i -1
M—1

( (Tiaj) i —qi+1

x = (20)
N

M4pipi—pit+ai—givi
( S+ Tcxj))

j=i

where gy _7,41=---=¢gn =0. Equation (20)
corresponds to (16) in [3] with C =0, where
C is the clutter-to-noise ratio. If we set the
number of integration to one, i.e., M =1, (20)
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becomes

Ppy =
all N! inverses
-1

N N
I (Z(HTa,-)) 1)
i=1 \ j=i
Equation (21) corresponds to (16) in [2] with
C=0. :
The detection probability for the Swerling
target model may be obtained for two different
conditions: 1 < K « M and 1 <M < K. For
the first condition, 1 < K < M, (3) has two
poles. One of them is the (M — K)th order
pole at s = —1 and the other is the K'th order
pole ats = —F, where F=1/(1+MS/K). In
this case, the detection probability is given by

-1 M=14py

e v 5O

all N!inverses py=0 Py_;=0
M—1+psM—K—1 m 4

pa=0 m=0 q=0¢,=0
-t f M —m—2

gn-12=0 K—1

(- M [M+P -1
GM-m-1 i M1

M+ Py —Pi+qi—qiv1—1

M+piyi—pi—1

N qi—4qi+1
T Za,-)
j=i

N MA+pis1—Pi+qi—qi+
( S+ Tozj))

j=i

X
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M—1 M=1+py
+
all N! inverses py=0 Py.,;=0
M—-l+psK—1 p q

2, 2.2

pr=0 p=0qg=0g=0

qn-12=0 GM P

(M-p-2)
X

M—K-1] =1\ M-1

M+pi‘_1

(M+Pi+l —Pitqi—qit1—-1

M+piv1—pi—1

N 9i—qi+1
T ZO!_,'
=i
N M+piw1=pi+qi—qis
(Z (1+T FO!_,‘))
=i

(22)

x

where G=1-F.

For the second condition, 1 < M < K, 3)
has the K'th order pole at s = — F, and the de-
tection probability is given by

M=1 M=l4py
P;=
all N!inverses Py=0 Py_,=0
M—l+ps K-1 m

M }D 3p 3
p2=0 m=M-1q,=0g.=0
gN-—T1-1 K _M

av-12=0\ K —mn —1

FK+q-m—1 N
x

i=t\ M-1

M+pi—1
N er=w

M+ pivi—pi+gi—gin—1

M+ piy~—pi—1
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N i —qi+1
T a;
J=i

N M+ pis1~qi+qi—gis1
(Z (1+ T()!j))

j=i

x

(23)

Equations (22) and (23) correspond to (22) and
(23)in [3], respectively, but these equations are
repeated here for a logical development.

For correlated Rayleigh target, the detec-
tion probability may be obtained from (7), (14)
and (19):

M—1 M—1+py
Py =
all N!inverses Pv=0 Py_;=0
M—1+ps M 1
— _
pr=0 n=1 I—IM _ 1+S)\-e
£ 1452,
N[ M+pi~1
X
i=t\ M-1

1
(ZN-’ (1+ 1.?;1 ))M+pf+l—m

The false alarm probability is the same for both

(24)

Swerling and correlated target models because
(7) is equivalent to (3) when S =0.

IV. ANALYTICAL RESULTS AND
DISCUSSION

In order to obtain detection performance
for partially correlated target returns, we must
provide the computation of eigenvalues [e.g.,
A; of (7)] of the correlation matrix R. We as-
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sume that a) the statistics of the target signal are
stationary, and b) the target signal is described
by a first-order Markov process. Under these
assumptions, R is a Toeplitz and nonnegative
definite matrix.

1 o p2_ pM—l
p 1 p--pM?

R= , 0=p=1
_pM—lpM—Z 1 1

(25)
We use the detection probability expres-
sions obtained in Section III to evaluate the
detection performances of the various CFAR
detectors. Parameters to implement various
CFAR detectors using the unified formula for
the GOS CFAR detector, (24), are given in Ta-
ble 1.

Table 1. Threshold coefficients (T') and GOS filter
coefficients («;) for implementing various
CFAR detectors (N =8, P, =107%)

CFAR Coefficients | Threshold

Detectors qf GOS Filter | Coefficient(T)
oy e ag M=3

CA CFAR 11111111 1.1544

08(6) CFAR 00000100 8.9057

TM(5,1) CFAR | 00000110 3.7844

CMLD(1) 11111110 1.5888

Chang-Joo Kim 23

Detection Probability, Pd

4 6 & 10 1 14 16 18 2 2

SNR[dB]

Fig. 2. Detection probabilities vs. target SNR for par-
tially correlated Rayleigh target (CA CFAR de-
tector).

0T T T T T T T T T T T

4 ] 8 10 12 14 16 18 20 22
SNRI[JB)

Tig. 3. Detection probabilities vs. target SNR for par-
tially correlated Rayleigh target (OS CFAR detec-

tor).

Calculated performances of various CFAR
detectors are shown in Figs. 2 - 5 as a func-
tion of per-pulse target SNR. Figs. 2 - 5 repre-
sent, respectively, the CA CFAR detector, the
0S(6) CFAR detector, the TM(5,1) CFAR de-
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00-T T T+ T T T
4 6 8 10 12 14 16 18 20 22
SNR [dB]

Fig. 4. Detection probabilities vs. target SNR for par-
tially correlated Rayleigh target (TM CFAR de-
tector).

00 T—r——T"Tr T T T T T
4 [ 8 10 12 14 16 18 20 22
SNR(dB)

Fig. 5. Detection probabilities vs. target SNR for par-
tially correlated Rayleigh target (CMLD(1) detec-
for).

tector, and the CMLD(1). Note that p = 0
and p = 1.0 correspond to the Swerling I and
II target models, respectively. These figures
clearly show the effect of partial correlation
(for M =3 pulses). The solid curve with no
symbol represents the Swerling I target (p = 0)
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and the dotted curve with no symbol represents
the Swerling I target (p = 1.0). As seen, for
P4 > 0.27, higher correlation means more fluc-
tuation loss and requires higher (single pulse)
SNR to achieve a given detection probabil-
ity. When detection probability is low (e.g.,
P; < 0.27), more fluctuation of target returns
means some SNR gain; however, we are not
interested in this low detection performance
region. In order to reduce the effect of tar-
get fluctuation, one may employ pulse-to-pulse
waveform diversity to decorrelate the returned
signal pulse.

V. CONCLUSIONS

In this paper we have given an analysis
of the GOS CFAR detector for a correlated
Rayleigh target as well as four Swerling tar-
get models. The GOS CFAR detector may be
interpreted as a generalization of various OS
CFAR detectors, such as the OS CFAR, the TM
CFAR, the CMLD, and the CA CFAR detec-
tors. Detection probabilities for general cor-
relation of target signals have been obtained
in a closed form. By properly choosing filter
coefficients (of the GOS CFAR detector), we
can obtain the detection performance of each
of these CFAR detectors. Detection perfor-
mances were computed and plotted for the cor-
related Rayleigh target model as well as four
Swerling target models.

It has been shown that target detectability is
a function of correlation; detection probability
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decreases with increasing correlation. To im-
prove detection performance, one may employ
pulse-to-pulse waveform diversity and decor-
relate the target returns.
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