• Title/Summary/Keyword: Signal Approach

Search Result 1,607, Processing Time 0.037 seconds

Efficiency Improvement of the Fixed-Complexity Sphere Decoder

  • Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.494-507
    • /
    • 2011
  • In this paper, we propose two schemes to reduce the complexity of fixed-complexity sphere decoder (FSD) algorithm in the ordering and tree-search stages, respectively, while achieving quasi-ML performance. In the ordering stage, we propose a QR-decomposition-based FSD signal ordering based on the zero-forcing criterion (FSD-ZF-SQRD) that requires only a few number of additional complex flops compared to the unsorted QRD. Also, the proposed ordering algorithm is extended using the minimum mean square error (MMSE) criterion to achieve better performance. In the tree-search stage, we introduce a threshold-based complexity reduction approach for the FSD depending on the reliability of the signal with the largest noise amplification. Numerical results show that in 8 ${\times}$ 8 MIMO system, the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3% of the computational efforts required by Hassibi's scheme, respectively. Moreover, a third threshold vector is outlined which can be used for high order modulation schemes. In 4 ${\times}$ 4 MIMO system using 16-QAM and 64-QAM, simulation results show that when the proposed threshold-based approach is employed, FSD requires only 62.86% and 53.67% of its full complexity, respectively.

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

Establishing Best Power Transmission Path using Receiver Based on the Received Signal Strength

  • Eom, Jeongsook;Son, Heedong;Park, Yongwan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.15-23
    • /
    • 2017
  • Wireless power transmission (WPT) for wireless charging is currently attracting much attention as a promising approach to miniaturize batteries and increase the maximum total range of an electric vehicle. The main advantage of the laser power beam (LPB) approach is its high power transmission efficiency (PTE) over long distance. In this paper, we present the design of a laser power beam based WPT system, which has a best WPT channel selection technique at the receiver end when multiple power transmitters and single power receiver are operated simultaneously. The transmitters send their transmission channel information via optically modulated laser pulses. The receiver uses the received signal strength indicator and digitized data to choose an optimum power transmission path. We modeled a vertical multi-junction photovoltaic cell array, and conducted an experiment and simulation to test the feasibility of this system. From the experimental result, the standard deviation between the mathematical model and the measured values of normalized energy distribution is 0.0052. The error between the mathematical model and measured values are acceptable, thus the validity of the model is verified.

Sensor Mat using POF for Medical Application (의료용 플라스틱 광섬유 센서 매트)

  • Choi, Kyoo-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.74-78
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to signal and to environmental noise, our approach provided reliable breath motion detection.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

An Adaptive Blind Equalizer Using Gaussian Two-Cluster Model (가우시안 2-군집 모델을 사용한 적응 블라인드 등화기)

  • Oh, Kil-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.473-479
    • /
    • 2012
  • In this paper, blind equalization technique using Gaussian two-cluster model is proposed. The proposed approach, by modeling the received M-QAM signals as Gaussian distributed two-cluster, minimizes the computational complexity and enhances the reliability of the signal estimates. In addition, by using a nonlinear estimator with variable parameters to estimate the transmitted signal, and by selectively applying the reduced constellation and the original constellation when estimating the signals, the reliability of the signal estimation was further improved. As a result, the proposed approach has improved the performance while reducing the complexity of the equalizer. Through computer simulations for blind equalization of higher-order signals of 64-QAM, it was confirmed that the proposed method showed better performance than traditional approaches.

Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM (MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선)

  • Choi, Heung-Ho;Kim, Jung-Ho;Kwon, Jang-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.237-244
    • /
    • 2006
  • This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

Efficiency Improvement of the Fixed-complexity Sphere Decoder

  • Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.330-343
    • /
    • 2011
  • In this paper, we propose two schemes to reduce the complexity of fixed-complexity sphere decoder (FSD) algorithm in the ordering and tree-search stages, respectively, while achieving quasi-ML performance. In the ordering stage, we propose a QR-decomposition-based FSD signal ordering based on the zero-forcing criterion (FSD-ZF-SQRD) that requires only a few number of additional complex flops compared to the unsorted QRD. Also, the proposed ordering algorithm is extended using the minimum mean square error (MMSE) criterion to achieve better performance. In the tree-search stage, we introduce a threshold-based complexity reduction approach for the FSD depending on the reliability of the signal with the largest noise amplification. Numerical results show that in $8{\times}8$ MIMO system, the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3% of the computational efforts required by Hassibi’s scheme, respectively. Moreover, a third threshold vector is outlined which can be used for high order modulation schemes. In $4{\times}4$ MIMO system using 16-QAM and 64-QAM, simulation results show that when the proposed threshold-based approach is employed, FSD requires only 62.86% and 53.67% of its full complexity, respectively.