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Abstract 
 

In this paper, we propose two schemes to reduce the complexity of fixed-complexity sphere 
decoder (FSD) algorithm in the ordering and tree-search stages, respectively, while achieving 
quasi-ML performance. In the ordering stage, we propose a QR-decomposition-based FSD 
signal ordering based on the zero-forcing criterion (FSD-ZF-SQRD) that requires only a few 
number of additional complex flops compared to the unsorted QRD. Also, the proposed 
ordering algorithm is extended using the minimum mean square error (MMSE) criterion to 
achieve better performance. In the tree-search stage, we introduce a threshold-based 
complexity reduction approach for the FSD depending on the reliability of the signal with the 
largest noise amplification. Numerical results show that in 8  8 MIMO system, the proposed 
FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3% of the computational 
efforts required by Hassibi’s scheme, respectively. Moreover, a third threshold vector is 
outlined which can be used for high order modulation schemes. In 4  4 MIMO system using 
16-QAM and 64-QAM, simulation results show that when the proposed threshold-based 
approach is employed, FSD requires only 62.86% and 53.67% of its full complexity, 
respectively. 
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1. Introduction 

Multiple-input multiple-output (MIMO) spatial multiplexing techniques linearly increase 
the channel capacity without requiring additional spectral resources which are not only 
expensive but also scarce [1]. At the transmitter side, signals are transmitted simultaneously 
from sufficiently-separated antennas, whereas at the receiver side signals are recovered by 
means of detection algorithms. 

The maximum-likelihood detector (MLD) is the optimum receiver for MIMO spatial 
multiplexing systems [2]. Nevertheless, MLD becomes infeasible for systems employing large 
number of transmit antennas and high order modulations due to its exponential complexity 
increase. Therefore, suboptimal detection schemes were proposed in the literature to achieve a 
tradeoff between performance and complexity as below. 

Linear detection schemes including zero-forcing (ZF) and minimum mean square error 
(MMSE) treat the received signal by the pseudo-inverse and a regularized pseudo-inverse of 
the channel matrix, respectively. Although linear detection schemes are simple in terms of 
computational complexity, they lead to degradation in the performance due to the independent 
processing of the transmitted signals [3]. 

Successive interference cancellation (SIC) schemes detect signals iteratively, where 
already-detected signals are subtracted out from the received vector leading to a system with 
fewer interferers.  ZF and MMSE VBLAST (vertical Bell Laboratories layered space-time) 
detection schemes [2], which are the first proposed SIC schemes, outperform linear algorithms. 
Nonetheless, VBLAST detection schemes have high computational complexity because of 
requiring a matrix pseudo-inversion at each iterative detection stage. Low complexity SIC 
detection algorithms based on the QR decomposition (QRD) of the channel matrix were 
proposed in the literature [4][5][6]. Although QRD-based SIC schemes are favorable in terms 
of computational complexity, their performance is still far from the optimum performance of 
the MLD.  

Several detection algorithms have been proposed in the literature achieving quasi-ML 
performance while requiring lower computational complexity. Among these suboptimal 
algorithms, sphere decoding (SD) achieves quasi-ML performance with polynomial average 
computational complexity [7]. It is shown; however, that SD has variable complexity which 
depends on the channel condition and the instantaneous noise power, where the worst-case 
complexity of SD is consequently comparable with that of MLD [8][9]. That is, the 
extreme-case complexity of SD is exponential. Also, in terms of implementation complexity, 
SD is inefficient due to its sequential nature in the tree search stage that limits the possibility of 
pipelining, where consequently the detection latency is increased [10][11]. 

To overcome the two aforementioned drawbacks of SD, fixed-complexity sphere decoder 
(FSD) was proposed in [10][11][12]. Analysis on the error performance of the FSE was 
introduced in [13]. The main idea of the FSD is to perform the search over a fixed number of 
hypotheses of the transmitted vector independently of the noise power and the channel 
condition. The complexity of FSD is, therefore, fixed and known prior to the tree search phase 
of the detection algorithm. Moreover, the hypotheses are tested in parallel leading to reduction 
in the algorithm latency, i.e., increase in the detector throughput. To achieve a quasi-ML 
performance, FSD requires a specific signal ordering in which signals suffering from the 
highest noise amplification are detected in levels where all signal candidates are retained. As a 
consequence, weak signals don’t affect the performance of the detection algorithm. The 
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conventional VBLAST algorithm is, therefore, used to obtain accurate signal ordering [14]. 
Despite that VBLAST ordering algorithm obtains a precise signal ordering, its complexity is 
shown to be 4( )O N , with N as the number of transmit antennas. This is computationally 
heavy when signal ordering is frequently performed [15]. 
 
Our original contributions: In this paper, we propose two schemes to reduce the complexity 
of FSD algorithm in the ordering and tree-search phases as follows [16]: 
• QRD-based FSD signal ordering: In the ordering stage, we propose to embed the signal 

ordering required by the FSD in the QRD. Thus, the proposed ordering scheme requires a 
few additional complex  multiplications and additions compared to the unsorted QRD 
algorithm with negligible degradation in the performance. Therefore, the proposed 
ordering scheme requires only a small fraction of the computational effort required by the 
conventional FSD-VBLAST sorting algorithm. ZF and MMSE performance-based 
criteria are used in the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD, respectively, 
where SQRD refers to sorted QR decomposition.  

• Analysis of the computational complexity: We give analytical formulas for the 
computational complexities of the conventional and proposed ordering schemes. 

• Threshold-based complexity reduction: In the tree-search stage, based on the 
reliability of the weakest received signal, i.e., signal with the lowest received signal to 
noise ratio (SNR), the number of retained symbol replicas is controlled. Thus, when the 
received SNR of the weakest signal is larger than a pre-defined threshold, unnecessary 
computations by the FSD are avoided while achieving a quasi-ML performance.  

The rest of this paper is organized as follows. In section II, we introduce the system model 
and review the FSD. In section III, we introduce the proposed FSD-ZF-SQRD and 
FSD-MMSE-SQRD schemes, and in section IV we derive the formulas for the computational 
complexities of the introduced sorting algorithms.  In section V, threshold-based complexity 
reduction scheme is proposed. Simulation results are shown in section VI, and conclusions are 
drawn in section VII. 

2. System Description and Review of the FSD 
We consider a MIMO multiplexing system employing N transmit and M receive antennas, 
where M ≥ N. Under the assumption of narrowband flat-fading channel, the received vector 

1M×∈r C is given by: 

 ,= +r Hx n                                (1) 

where 1N×∈x C is the transmitted vector whose elements are drawn from the modulation set Ω 
satisfying *E[ ]xx = IN, where IN is the N×N identity matrix. 1M×∈n C  is the additive white 
Gaussian noise with zero mean and unity variance. M N×∈H C is the channel matrix whose 
row-column element , ,i jh the complex channel coefficient between the j-th transmit and i-th 
receive antennas, is modeled as circularly symmetric complex Gaussian random variable with 
zero mean and unity variance.  

Working on x, the matrix H generates the lattice 
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}{( ) : N∆ = ∈ΩH Hx x ,                        (2) 
where the columns of H, i.e., (h1, h2, …, hN), are the bases of the lattice. The received vector 
r is then represented as the lattice point Hx perturbed by the noise vector n. As a consequence, 
the MLD finds the closest lattice point ˆHx to the received vector r, where x̂  is the estimate of 
the transmitted vector x. That is, 
 

2ˆ arg minML
N∈Ω

= −
x

x r Hx .                                             (3) 

 
SD restricts the search in (3) to the lattice points that reside in the hyper-sphere of radius d 

and centred at the received vector r. Therefore, 
 

 ( )2 2ˆ arg minSD
N

d
∈Ω

= − ≤
x

x r Hx .                           (4) 

 
To perform the search in (4) successively, the channel matrix H is factorized into the 
multiplication of a unitary matrix Q and an upper triangular matrix R.  
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Fig. 1. An example of the fixed-complexity sphere decoder (FSD) for QPSK modulation, N = 3 and p = 1. 

Therefore, the search problem in (4) is simplified to: 
 

 ( )2 2ˆ arg minSD
N

d
∈Ω

= − ≤
x

x y Rx ,                                      (5) 

 
where H=y Q r . The accumulative metric in (5) is then calculated successively, where the 
metric at the N-th detection level is given by: 
 

( )2

, ˆ ,N N N N NE y R x= −
                           

 (6) 
 
and the accumulative metric at the (N-1)-th detection level is given as follows: 
 

( )2

1 1 1, 1 1 1,ˆˆ ,N N N N N N N N NE E y R x R x− − − − − −= + − −
                              

(7) 
 

and so on.  
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Although the average complexity of SD is known to be polynomial, its extreme-case 
complexity is believed to be exponential, particularly for high noise power and when the 
channel matrix is ill-conditioned. Also, due to the sequential nature of the SD, it can’t be 
pipelined leading to high latency in the detection algorithm. 

To overcome the aforementioned problems of the SD, FSD was proposed by Barbero et al. 
FSD achieves a quasi-ML performance by performing the following two-stage tree search: 
• Fixed expansion stage: In the first p detection levels, a full expansion of the retained 

nodes is performed, where all the resulting branches are retained for the next levels. 
• Single expansion stage: All retained branches in the precedent level are extended 

independently to all possible nodes. The accumulative metrics of the resulting branches 
are calculated as in (5), and only the branch with the smallest accumulative metric is 
retained for the next level. This can be done using Schnorr-Euchner strategy [17], where 
only the metric of the node with the smallest accumulative metric is calculated. 

Fig. 1 shows an example of the FSD for quadratic phase shift keying (QPSK) signalling, N 
= 3, and p = 1. Each node represents a constellation point belonging to the QPSK constellation 
set Ω =    {-1-j, -1+j, 1+j, 1-j}. At the 3rd level, all the symbol replica candidates for x3 are 
retained for the next detection levels, and the metric of each node, given inside the node in Fig. 
1, is calculated as in (6). At the 2nd level, each retained node at the precedent level is extended 
independently from others, and the best child node is selected such that the accumulative 
metric is minimized. This strategy is repeated up to the 1st level, where the node with the 
smallest accumulative metric and its connected nodes are considered as the final estimate of 
the transmitted vector. For the example in Fig. 1, x̂  = {-1+j, -1-j,  -1-j} and is indicated by the 
thick branches and nodes. 

Because all possible symbol candidates are retained in the first p levels, the reliability of 
signals does not affect the final detection performance. Therefore, signals with the least 
robustness are detected in the full expansion stage. On the other hand, in the remaining (N − p) 
levels, signals are sorted based on their reliability, where signals with the least noise 
amplification are detected first. 

In the conventional FSD, VBLAST signal sorting is iteratively used to decide the order in 
which signals are detected. Although reduced complexity VBLAST ordering schemes were 
proposed in the literature [15][18], it is still complex compared to other QRD-based signal 
sorting schemes. 

In the following section, we propose a low-complexity ordering scheme that achieves the 
required performance while reducing the computational complexity. Also, computational 
complexity comparison among different ordering schemes is performed. 

3. Proposed QRD-based FSD Signal Ordering Schemes 
In the pre-detection stage, the channel matrix is decomposed into the multiplication of a 
unitary matrix Q and an upper triangular matrix R. Due to the structure of the upper triangular 
matrix R, the detection is performed successively starting by the last component of the vector 
x, i.e., xN. In the conventional QR-decomposition, the diagonal elements of R are obtained in 
opposite order of signal detection. In the sorted QR-decomposition (SQRD), the columns of 
the channel matrix are reordered prior to each orthogonalization step, where R1,1 is minimized 
over all the columns of the channel matrix, followed by R2,2, and so on. Unfortunately, the 
SQRD does not sort signals in the order required by FSD. 
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In FSD, the efficient VBLAST algorithm is used to obtain the signal ordering prior to the 
QR-decomposition of the channel matrix. Despite that FSD achieves a quasi-ML performance 
using VBLAST ordering, the computational effort required by the ordering stage becomes 
exhaustive as the channel varies rapidly, where ordering is performed frequently. 

The main idea of the proposed signal ordering algorithm is to obtain the (p+1)th minimum 
diagonal element of R prior to the orthogonalization step. Now, let p = 1, then R1,1 is simply 
the norm of the channel matrix column whose order is the second in the norm sense. So, the 
column of H with the 2nd minimum norm is permuted with the first column. Thereafter, R2,2 is 
computed in the same manner by considering only the remaining (N−1) columns, etc. At the 
last iteration, the order of signal detection is same as that required by FSD algorithm. 

Fig. 2 depicts an example of the proposed FSD-SQRD for p = 1, where p is the permutation 
vector. At the first iteration, the column with the 2nd minimum norm is permuted with the first 
column of H and the remaining (N–1) vectors are orthogonalized. In the next iteration, the 
orthogonalized column with the 2nd minimum norm is permuted with the first remaining 
orthogonalized column. At the (N − 1) th iteration, the remaining two columns correspond to 
the strongest and the weakest signals, i.e., the largest and the smallest received signal to noise 
ratio (SNR), respectively. Thus, the selected column corresponds to the signal with the largest 
SNR and the remaining one corresponds to the weakest signal. By doing so, the required order 
by FSD is obtained. 

The introduced FSD signal sorting scheme is applied with the ZF and the MMSE 
performance-based criteria in the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD 
algorithms, respectively. To apply the FSD-MMSE-SQRD, the channel matrix is extended to 
take into consideration the noise effect; that is, 
 

,
n N

M N N
ext σ

+ ×∈ =
 
 
 

H
H C

I
                             (8) 

 
Table 1 gives a detailed algorithmic description of the proposed FSD-MMSE-SQRD 

algorithm where the input n equals (p + 1). 0N is the NN matrix whose elements are all zeros, 
and mink is the k-th minimum. The FSD-ZF-SQRD is obtained by simply replacing Hext  by H, 
and line (7) in Table 1 by the following line. 

 (7) Exchange columns i and ki in Q, R, norm, and p. 

4. Analysis on the Computational Complexity 
In this section, the computational complexities of the introduced signal ordering schemes are 
investigated. The complex floating points (flops) are given as a function of N and M, where the 
complex addition and multiplication operations are counted as one and three flops, 
respectively. Other operations are tracked back to the complex operations. For instance, real 
addition requires half a flop. 

Table 2 gives the formulas for the computational complexities of the aforementioned signal 
sorting schemes. Hassibi’s sorting scheme is a low complexity VBLAST algorithm used 
herein for comparison [6] and the assorted-ZF-QRD refers to the zero-forcing QRD without 
signal ordering. 
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Fig. 2. Example of the proposed signal sorting algorithm. 

Table 1. The proposed FSD-MMSE-SQRD algorithm. 

 
 

Table 2. Computational complexities of the sorting schemes. 

Ordering scheme Complexity (flops) 

Hassibi’s 3 2 240 39
6 12 4 7 30

3 2
N N M N NM N M+ + + + − −  

FSD-MMSE-SQRD 3 2 24 5 13
4

3 4 12
N N M N NM N+ + − −  

FSD-ZF-SQRD 2 23 3
4

4 4
N M N NM N+ − −  

Assorted ZF-QRD 2 21 1
4

2 2
N M N NM N− − +  
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Fig. 3. Complexity in number of required floating point operations for Hassibi’s scheme, the assorted 

QRD schemes, FSD-MMSE-SQRD, and FSD-ZF-SQRD. 

Fig. 3 shows the computational complexities of the proposed algorithms with the 
conventional ones.  Clearly, the proposed algorithms require much lower computational 
efforts compared to Hassibi’s scheme. For instance, in 88 MIMO system, the proposed 
FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3%, respectively, of the 
computational efforts required by Hassibi’s scheme. The proposed signal sorting algorithms 
require only 1.25 (N2 – N) additional flops compared to the assorted algorithms, i.e., without 
signal ordering.  

The complexity of the conventional norm sorting FSD-norm is considered to be equivalent 
to that of the assorted QRD algorithm. 

5. Threshold-based Complexity Reduction for the FSD 
The first detected signal in the FSD, i.e., xN, is the signal that suffers the largest noise 
amplification. Therefore, all the remaining (N-1) signals are more robust than the first ranked 
signal. Thus, if xN experiences low noise amplification, the number of retained symbol replica 
candidates can be reduced without affecting the final performance. In contrast to the common 
adaptive symbol replica selection proposed in [19], FSD can have more reliable decision about 
the number of retained symbol replicas because its decision is based on the reliability of the 
signal suffering the largest noise amplification, whereas the algorithm in [19] does not take 
into consideration the weak signals. 

Due to the structure of the matrix R, the signal xN is interference-free, therefore, the 
robustness of the signal is directly proportional to |RN,N|. Thus, based on the value of |RN,N|, we 
decide the number of retained symbol replicas at the first full expansion stage. To accomplish 
that, we introduce three threshold vectors and the corresponding number of retained symbol 
replicas for the first full expansion level as follows: 
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Due to the fact that 
 

{ } { } { }, , ,P 0.4 P 0.5 P 0.75 ,N N N N N NR R R≤ < ≤ < ≤
                         

(12) 

more complexity reduction can be achieved when the threshold vector P3 is used as compared 
to the case of using the threshold vector P2 or P1. This is because the three aforementioned 
probabilities in (12) are the cases in which the proposed approach fails to achieve any 
complexity reduction using P3, P2, and P1, respectively. Note that we obtained the threshold 
vectors using intensive simulations. In practice, the channel models are usually known, which 
indicates that an offline optimization of these threshold vectors is possible. Another alternative 
is to compute the probability density function (pdf) of RN,N and set the threshold vector as a 
trade-off between complexity reduction and performance degradation. The later option is 
suitable for systems that have preambles. These preambles can be used in the training phase to 
obtain optimized values of the threshold vector. 
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6. Simulation Results and Discussions  
In this section, we investigate the bit error rate (BER) performance of the FSD in 44 MIMO 
spatial multiplexing system. Transmitted symbols are modulated using 4-QAM, 16-QAM, or 
64-QAM mappers. The channel state information (CSI) is considered to be perfectly known at 
the receiver and unknown at the transmitter.  

Fig. 4 shows the BER performance of the FSD for different signal ordering schemes in a 4×4 
MIMO system using 4-QAM modulation. Without signal ordering, the performance of FSD is 
highly degraded and the diversity order, i.e., the slope of the BER curve, is lower than that of 
SD. When applying FSD-norm signal ordering, the BER performance is improved by 
approximately 2.7dB at BER of 10−4 whereas no improvement in the diversity order is 
achieved. On the other hand, when FSD-VBLAST ordering is applied, FSD algorithm achieves 
the same diversity order of SD with a 0.2dB performance lagging at BER = 10−4. When the 
proposed FSD-ZF-SQRD signal ordering is employed, FSD attains the diversity order of SD 
with a degradation of less than 0.6dB compared to SD at BER of 10−4. At the same target BER, 
FSD lags the optimum performance by only 0.4dB when the proposed FSD-MMSE-SQRD 
sorting algorithm is employed. This small degradation in the BER performance is tolerable 
considering the low computational complexity of the proposed algorithms compared with the 
conventional FSD-VBLAST signal ordering. Due to space limitation, we consider the proposed 
FSD-ZF-SQRD for the following comparisons. 

Fig. 5 depicts the performance of the FSD employing the proposed FSD-ZF-SQRD 
algorithm using different QAM schemes. At BER of 10−4, a degradation of 0.6dB, 0.3dB, and 
0.25dB are remarked in the BER performance of the FSD when employing FSD-ZF-SQRD in 
a 4×4 system using 4-QAM, 16-QAM, and 64-QAM, respectively. That is, as the modulation 
order increases, the degradation due to the use of the proposed FSD-SQRD algorithms 
vanishes compared with the performance of FSD employing the complex FSD-VBLAST 
sorting scheme. 
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Fig. 4. BER performance of FSD for different signal sorting schemes using 4-QAM. 
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Fig. 5. BER performance of FSD for different signal sorting and modulation schemes. 
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Fig. 6. BER performance of FSD using the proposed FSD-ZF-SQRD for different threshold values. 

Table 3. Achieved reduction in the complexity of FSD  by the proposed threshold-based approach in a 
4×4 MIMO system. 

 Reduced Computational Complexity (%) 
Threshold 4-QAM 16-QAM 64-QAM 

P1 12.04 12.08 12.09 
P2 28.03 30.52 31.10 
P3 Not applied 37.14 46.33 

 
Fig. 6 shows the BER performance of the FSD when the number of retained symbol replicas 

at the first detection level is controlled by the threshold vectors P1, P2, or P3. In the case of 
using P1, the complexity reduction does not have any effect on the achieved performance of 
FSD for the different applied modulation schemes. By contrast, when the threshold vector P2 
is used, the performance of FSD using 4-QAM is degraded at medium Eb/No values, whereas 
the performance is still intact when 16-QAM or 64-QAM is used. 
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Therefore, the vector P3, which is tighter than P1 and P2, is not used with 4-QAM signalling 
scheme. In the case of using P3, we remark a slight degradation in the BER performance when 
16-QAM or 64-QAM is used. For instance, at BER of 10-3, the maximum degradation is about 
0.5dB and 0.3dB for 16-QAM and 64-QAM, respectively. This degradation in the 
performance is tolerable due to the remarkable reduction in the computational complexity. 

Table 3 gives the achieved percentage of reduction in the computational complexity of FSD 
for different modulation schemes and threshold vectors. When the threshold vector P1 is used, 
about 12% of complexity reduction is achieved for all modulation schemes. On the other side, 
when P2 is used, the reduction in the complexity of FSD increases as the modulation order 
increases attaining 31.1% reduction in the case of 64-QAM. In the case of P3, 37.14% and 
46.33% of the computational efforts required by the conventional FSD are avoided when 
16-QAM and 64-QAM are used, respectively. 

We conclude that for high modulation orders, the set of candidates for each symbol becomes 
large. Therefore, when we apply a high complexity reduction, e.g., using P3, there will still be 
enough retained candidates to obtain a quasi-ML solution. However, in the case of low 
modulation orders, e.g., QPSK, when the threshold vector P3 is applied, there will be a few 
retained candidates at each detection level. These retained candidates might not be sufficient 
to obtain a quasi-ML performance. 

7. Conclusions 
In this paper, we proposed two techniques to reduce the computational complexity of FSD in 
the ordering and tree search stages, respectively. In the ordering stage, we proposed 
QRD-based FSD signal ordering scheme (FSD-SQRD) that leads to quasi-ML performance 
while requiring only a fraction of the computational complexity of the conventional 
FSD-VBLAST ordering algorithm. The proposed ordering algorithm is then extended to the 
MMSE case, where better performance is obtained. In the tree-search stage, we introduced a 
complexity reduction approach for FSD algorithm based on the reliability of the signal with 
the lowest received SNR value. That is, if the lowest SNR of the received signals is higher than 
a pre-defined threshold, the number of retained symbol replicas is reduced leading to the 
reduction in the computational complexity of the FSD algorithm with negligible degradation 
in the BER performance. The proposed improvements for FSD remarkably reduce the 
computational efforts required to achieve quasi-ML performance. As a consequence, FSD can 
be considered as a prominent detection scheme for next generation communication systems. 
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