• 제목/요약/키워드: Sign Language

검색결과 280건 처리시간 0.028초

세미-마르코프 조건 랜덤 필드 기반의 수화 적출 (Sign Language Spotting Based on Semi-Markov Conditional Random Field)

  • 조성식;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1034-1037
    • /
    • 2009
  • 수화 적출이란 연속된 영상에서 수화의 시작과 끝점을 찾고, 이를 사전에 정의된 수화 단어로 인식하는 방법을 말한다. 수화는 매우 다양한 손의 움직임과 모양으로 구성되어 있고, 그 변화가 다양하여 적출에 많은 어려움이 있다. 특히, 다양한 길이의 궤적 정보로 구성된 수화는 길이가 긴 수화에 대해 짧은 길이를 갖는 수화가 인식에 필요한 정보를 추출하기 어려운 문제점 있다. 본 논문에서는 다양한 길이를 갖는 입력 데이터의 특징을 반영할 수 있는 Semi-Markov Conditional Random Field에 기반하여 다양한 수화의 길이에 강인하게 수화를 적출하는 방법을 제안한다. 성능 평가를 위해 미국 수화와 한국 수화 데이터베이스를 사용하여 연속된 수화 영상에서의 수화 적출 성능을 평가하였고, 실험 결과 기존의 Hidden Markov Model과 Conditional Random Field보다 뛰어난 성능을 보였다.

CNN기반의 청각장애인을 위한 수화번역 프로그램 (CNN-based Sign Language Translation Program for the Deaf)

  • 홍경찬;김형수;한영환
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.206-212
    • /
    • 2021
  • 사회가 점점 발전하면서 의사소통 방법이 다양한 형태로 발전하고 있다. 그러나 발전한 의사소통은 비장애인을 위한 방법이며, 청각장애인에게는 아무런 영향을 미치지 않는다. 따라서 본 논문에서는 청각장애인의 의사소통을 돕기 위한 CNN 기반의 수화번역 프로그램을 설계 및 구현한다. 수화번역 프로그램은 웹캠을 통해 입력된 수화 영상 데이터를 기반으로 의미에 맞게 번역한다. 수화번역 프로그램은 직접 제작한 24,000개의 한글 자모음 데이터를 사용하였으며, 효과적인 분류모델의 학습을 위해 U-Net을 통한 Segmentation을 진행한다. 전처리가 적용된 데이터는 19,200개의 Training Data와 4,800개의 Test Data를 통하여 AlexNet을 기반으로 학습을 진행한다. 구현한 수화번역 프로그램은 'ㅋ'이 97%의 정확도와 99%의 F1-Score로 모든 수화데이터 중에서 가장 우수한 성능을 나타내었으며, 모음 데이터에서는 'ㅣ'가 94%의 정확도와 95.5%의 F1-Score로 모음 데이터 중에서 가장 높은 성능을 보였다.

다시점 수어 데이터 획득 및 저장 시스템 설계 및 구현 (Design and Implementation of Data Acquisition and Storage Systems for Multi-view Points Sign Language)

  • 김근모;김봉재
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.63-68
    • /
    • 2022
  • 한국장애인개발원의 2021 장애통계연보 자료에 따르면 대한민국에 청각 장애를 가지고 있는 사람은 395,789명이 있다. 이러한 사람들이 청각 장애를 통해 많은 불편을 겪고 있고, 이를 해결하기 위해 수어 인식 및 번역에 관련된 많은 연구가 진행되고 있다. 수어 인식 및 번역 연구에서는 수어 데이터를 수집하는 것이 중요한 부분을 차지하고 있지만 한국어 수어 데이터는 전문적으로 수어를 사용하는 사람의 수가 많지 않아 많은 어려움이 있다. 또한 구축된 기존의 데이터들도 발화자의 정면에서 촬영된 수어 데이터가 대부분이다. 이와 같은 문제점을 해결하기 위해 본 연구에서는 하나의 시점이 아닌 다시점에서 수어 데이터를 실시간으로 수집하고 보다 활용 편의성이 높게 저장 및 관리할 수 있는 저장 시스템을 설계하고 구현하였다.

Enhanced Sign Language Transcription System via Hand Tracking and Pose Estimation

  • Kim, Jung-Ho;Kim, Najoung;Park, Hancheol;Park, Jong C.
    • Journal of Computing Science and Engineering
    • /
    • 제10권3호
    • /
    • pp.95-101
    • /
    • 2016
  • In this study, we propose a new system for constructing parallel corpora for sign languages, which are generally under-resourced in comparison to spoken languages. In order to achieve scalability and accessibility regarding data collection and corpus construction, our system utilizes deep learning-based techniques and predicts depth information to perform pose estimation on hand information obtainable from video recordings by a single RGB camera. These estimated poses are then transcribed into expressions in SignWriting. We evaluate the accuracy of hand tracking and hand pose estimation modules of our system quantitatively, using the American Sign Language Image Dataset and the American Sign Language Lexicon Video Dataset. The evaluation results show that our transcription system has a high potential to be successfully employed in constructing a sizable sign language corpus using various types of video resources.

Vision- Based Finger Spelling Recognition for Korean Sign Language

  • Park Jun;Lee Dae-hyun
    • 한국멀티미디어학회논문지
    • /
    • 제8권6호
    • /
    • pp.768-775
    • /
    • 2005
  • For sign languages are main communication means among hearing-impaired people, there are communication difficulties between speaking-oriented people and sign-language-oriented people. Automated sign-language recognition may resolve these communication problems. In sign languages, finger spelling is used to spell names and words that are not listed in the dictionary. There have been research activities for gesture and posture recognition using glove-based devices. However, these devices are often expensive, cumbersome, and inadequate for recognizing elaborate finger spelling. Use of colored patches or gloves also cause uneasiness. In this paper, a vision-based finger spelling recognition system is introduced. In our method, captured hand region images were separated from the background using a skin detection algorithm assuming that there are no skin-colored objects in the background. Then, hand postures were recognized using a two-dimensional grid analysis method. Our recognition system is not sensitive to the size or the rotation of the input posture images. By optimizing the weights of the posture features using a genetic algorithm, our system achieved high accuracy that matches other systems using devices or colored gloves. We applied our posture recognition system for detecting Korean Sign Language, achieving better than $93\%$ accuracy.

  • PDF

3D 아바타의 자연스러운 수화 동작 표현 방법 (Soft Sign Language Expression Method of 3D Avatar)

  • 오영준;장효영;정진우;박광현;김대진;변증남
    • 정보처리학회논문지B
    • /
    • 제14B권2호
    • /
    • pp.107-118
    • /
    • 2007
  • 본 논문에서는 실제 수화자의 관점에서 기존 수화 아바타의 한계와 문제점을 지적한다. 이를 해결하기 위하여 손 모양, 손 방향, 손 운동을 비롯하여 입술 움직임, 얼굴 표정, 안색, 운동자 움직임, 몸동작 등을 통해 수화를 보다 자연스럽게 표현할 수 있는 수화 아바타를 개발하였다. 또한, 데이터베이스의 성능을 높이기 위해 손의 움직임과 함께 다른 신체 요소들의 움직임을 구조적으로 같이 기술할 수 있는 하이퍼 수화 문장을 제안한다. 개발된 시스템의 우수성을 보이기 위해 실제 청각 장애인을 대상으로 설문조사를 수행하여 시스템의 사용성을 평가하였다.

Sign Language Translation Using Deep Convolutional Neural Networks

  • Abiyev, Rahib H.;Arslan, Murat;Idoko, John Bush
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.631-653
    • /
    • 2020
  • Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.

청각장애 아동의 우울에 대한 어머니의 양육태도와 수화수준의 영향 (Effects of Mothers' Nurturing Attitude and Mothers' Sign Language Level on the Depression of Hearing Impairment Children)

  • 최영희;조문교
    • 한국지역사회생활과학회지
    • /
    • 제23권1호
    • /
    • pp.41-50
    • /
    • 2012
  • This study was performed to understand the depression of children with hearing impairment with relation to their mothers' nurturing attitude and sign language level. The subjects were 131 hearing impaired children aged from 9 to 16 years and their mothers, who had no hearing impairments. The children's depression was assessed by CDI(Kovacs 1983) adapted by Cho and Lee(1990), and the maternal attitude was measured through the instrument developed by Oh and Lee(1982) and revised by Lim(1987). The results were as follows. First, the girls' depression was higher than the boys', and children in a dormitory type of school showed higher depression than those in a general type of school. Second, children's depression did not show differences according to mother-child communication methods but differed according to mothers' sign language level. Children whose mothers had high level of sign language showed the highest depression and those whose mothers had beginning level of sign language showed the lowest depression. And mothers' affective, goal- achieving and rational attitude were negatively related with children's depression. Third, the depression of hearing impairment children was influenced mainly by the maternal affective attitude, and the next order was the type of school the children attend.

Continuous Korean Sign Language Recognition using Automata-based Gesture Segmentation and Hidden Markov Model

  • Kim, Jung-Bae;Park, Kwang-Hyun;Bang, Won-Chul;Z.Zenn Bien;Kim, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.105.2-105
    • /
    • 2001
  • This paper studies continuous Korean Sign Language (KSL) recognition using color vision. In recognizing gesture words such as sign language, it is a very difficult to segment a continuous sign into individual sign words since the patterns are very complicated and diverse. To solve this problem, we disassemble the KSL into 18 hand motion classes according to their patterns and represent the sign words as some combination of hand motions. Observing the speed and the change of speed of hand motion and using state automata, we reject unintentional gesture motions such as preparatory motion and meaningless movement between sign words. To recognize 18 hand motion classes we adopt Hidden Markov Model (HMM). Using these methods, we recognize 5 KSL sentences and obtain 94% recognition ratio.

  • PDF

Human-like sign-language learning method using deep learning

  • Ji, Yangho;Kim, Sunmok;Kim, Young-Joo;Lee, Ki-Baek
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.435-445
    • /
    • 2018
  • This paper proposes a human-like sign-language learning method that uses a deep-learning technique. Inspired by the fact that humans can learn sign language from just a set of pictures in a book, in the proposed method, the input data are pre-processed into an image. In addition, the network is partially pre-trained to imitate the preliminarily obtained knowledge of humans. The learning process is implemented with a well-known network, that is, a convolutional neural network. Twelve sign actions are learned in 10 situations, and can be recognized with an accuracy of 99% in scenarios with low-cost equipment and limited data. The results show that the system is highly practical, as well as accurate and robust.