• Title/Summary/Keyword: Sight distance

Search Result 198, Processing Time 0.022 seconds

Two-Phase Localization Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서의 2단계 위치 추정 알고리즘)

  • Song Ha-Ju;Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.172-188
    • /
    • 2006
  • Sensor localization is one of the fundamental problems in wireless sensor networks. Previous localization algorithms can be classified into two categories, the GGB (Global Geometry-Based) approaches and the LGB (Local Geometry-Based). In the GGB approaches, there are a fixed set of reference nodes of which the coordinates are pre-determined. Other nodes determine their positions based on the distances from the fixed reference nodes. In the LGB approaches, meanwhile, the reference node set is not fixed, but grows up dynamically. Most GGB algorithms assume that the nodes are deployed in a convex shape area. They fail if either nodes are in a concave shape area or there are obstacles that block the communications between nodes. Meanwhile, the LGB approach is vulnerable to the errors in the distance estimations. In this paper, we propose new localization algorithms to cope with those two limits. The key technique employed in our algorithms is to determine, in a fully distributed fashion, if a node is in the line-of-sight from another. Based on the technique, we present two localization algorithms, one for anchor-based, another for anchor-free localization, and compare them with the previous algorithms.

  • PDF

Performance Analysis of Location Estimation Algorithm Considering an Extension of Searching Area (탐색범위 확장을 고려한 위치추정 알고리즘의 성능분석)

  • Jeong, Seung-Heui;Lee, Hyun-Jae;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.385-393
    • /
    • 2006
  • In this paper, we proposed a location estimation algorithm considering an extension of searching area in 2.45GHz band RTLS and analyzed its performance in terms of an average estimation error distance. The extendable searching area was assumed to be square of $300m{\times}300m$ and 2 dimensions. The arrangement shape of available readers was considered circle, rectangle, and shrinkage rectangle for extendable searching area. Also, we assumed that propagation path was LOS (Line-Of-Sight) environment, and analyzed the estimation error performance as a function of the number of received sub-blink considering an arrangement shape of available readers in searching area. From the results, compared with rectangle shape, circle shape showed the higher estimation accuracy. Also, we confirmed that the proposed location estimation algorithm provided high estimation accuracy in the shrinkage rectangle shape that was suitable for extension of searching area.

  • PDF

Estimating the Effectiveness of Road Safety Features using Pedestrian Accident Probability Model (보행자 사고확률모형을 이용한 도로안전시설물의 효과도 추정(4차로 일반국도를 대상으로))

  • Park, Gyu-Yeong;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.55-65
    • /
    • 2006
  • The ratio of Pedestrians in traffic accident fatality takes up 43% in Korea, which is 2.5 times as much as OECD's average. The traffic accidents features by road type shows that the fatality of the national highway posts the highest due to the accidents of pedestrians. Accordingly, the establishment of safety facilities for pedestrians is expected to increase on the rural roads for the prevention of pedestrian accidents. However, studies on pedestrians have been mainly focused on urban intersections. In Particular, studies on estimating the effectiveness of safety features for pedestrians are very poor. Thus, in this study. the Pedestrian accident probability model on four lane national highway was developed by using logit model. Also, this study analyzed and proposed the effect of facilities as a relative risk by using an odds ratio. As a result of the analysis, the Improvement of sight distance, installing sidewalks and lightings were proven effective alternatives for reducing the pedestrian accidents.

WAVE Communication-based V2I Channel Modeling

  • Lee, Soo-Hwan;Kim, Jong-Chan;Lim, Ki-Taek;Cho, Hyung-Rae;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.899-905
    • /
    • 2016
  • Wireless access in vehicle environment (WAVE) communication is currently being researched as core wireless communication technologies for cooperative intelligent transport systems (C-ITS). WAVE consists of both vehicle to vehicle (V2V) communication, which refers to communication between vehicles, and vehicle to infrastructure (V2I) communication, which refers to the communication between vehicles and road-side stations. V2I has a longer communication range than V2V, and its communication range and reception rate are heavily influenced by various factors such as structures on the road, the density of vehicles, and topography. Therefore, domestic environments in which there are many non-lines of sight (NLOS), such as mountains and urban areas, require optimized communication channel modeling based on research of V2I propagation characteristics. In the present study, the received signal strength indicator (RSSI) was measured on both an experience road and a test road, and the large-scale characteristics of the WAVE communication were analyzed using the data collected to assess the propagation environment of the WAVE-based V2I that is actually implemented on highways. Based on the results of this analysis, this paper proposes a WAVE communication channel model for domestic public roads by deriving the parameters of a dual-slope logarithmic distance implementing a two-ray ground-reflection model.

The Aspects, Reasons and Outcomes of an Unmanned Air Vehicle Crash Caused By Engine Failure

  • Cuhadar, Ismet;Dursun, Mahir
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The Unmanned Air Vehicle (UAV) systems are indispensable tools of air surveillance and reconnaissance nowadays. Via this systems, hazardous end risky intelligence gathering activities are handled easily. Although they are named as "Unmanned" the UAV systems are commanded by pilots/operators. So, because of weather conditions, enemy attacks etc. as well as pilot error it is possible to face with sudden Round per Minute (RPM) drops and subsequently engine cut/stop during a mission flight at high altitudes. In this case, there are some very urgent decisions to make and rapid "emergency procedure" steps to take in a very short time before Line of Sight (LOS) is lost. The time before crash and the distance to landing air base need to be calculated, the Return Home route need to be checked and the landing/crash side need to be determined. Therefore it is a vital necessity that UAV pilots have some extra qualifications like being determined, well instructed and trained, experienced apart from operating ability. Within this scope, for an education process of a UAV pilot experience sharing and lessons learned are as important as simulators even more. By means of lessons learned it is possible to find out the reasons, mistakes and prevent the likely UAV accidents. In this study it is told about a real UAV crash, experienced of the pilot, the dos and don'ts and the difficulties. Thus it is aimed to help the people who can experience the same or similar situations in future.

Effective ToA-Based Indoor Localization Method Considering Accuracy in Wireless Sensor Networks (무선 센서 네트워크 상에서 정확도를 고려한 효과적인 도래시간 기반 무선실내측위방법)

  • Go, Seungryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 2016
  • We propose an effective ToA-based localization method considering accuracy in indoor environments. The purpose of the localization system is to estimate the coordinates of the geographic location of target device. In indoor environments, accurately estimating the location of a target device is not easy due to various errors. The accuracy of wireless localization is influenced by NLOS errors. ToA-based localization measures the location of a target device using the distances between a mobile device and three or more base stations. However, each of the NLOS errors along a distance estimated from a target device to a base station is different because of dissimilar obstacles. To accurately estimate the target's location, an optimized localization process is needed in indoor environments. In this paper, effective ToA-based localization method process is proposed for improving accuracy in wireless sensor networks. Performance evaluations are presented, and the experimental localization system results are proved through comparisons of various localization methods with the proposed methods.

Efficient Cooperative Transmission Scheme for High Speed WPAN System in 60GHz (60GHz WPAN 시스템의 전송 효율 향상을 위한 협력 통신 기법)

  • Lee, Won-Jin;Lee, Jae-Young;Suh, Young-Kil;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.255-263
    • /
    • 2010
  • In this paper, we present an efficient cooperative transmission scheme for high speed 60GHz WPAN system. In 60GHz, the cooperative transmission with relay is effective scheme because signals are exceedingly attenuated according to the distance and the transmission is impossible when there is no LOS between transmitter and receiver. Moreover, the reliability of signal in destination can be improved by receiving data from a relay as well as a transmitter. However, the overall data rate is reduced because transmission time is more required for relay. To solve this problem, we propose a cooperative transmission scheme with RS-CC serial concatenated codes. In the proposed cooperative transmission scheme, the relay can reduce the transmission data size because the only parity bits of systematic RS code are transmitted after encoding by CC. But the computational complexity is increased at the relay and the destination.

Parallel Computing on Intensity Offset Tracking Using Synthetic Aperture Radar for Retrieval of Glacier Velocity

  • Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • Synthetic Aperture Radar (SAR) observations are powerful tools to monitor surface's displacement very accurately, induced by earthquake, volcano, ground subsidence, glacier movement, etc. Especially, radar interferometry (InSAR) which utilizes phase information related to distance from sensor to target, can generate displacement map in line-of-sight direction with accuracy of a few cm or mm. Due to decorrelation effect, however, degradation of coherence in the InSAR application often prohibit from construction of differential interferogram. Offset tracking method is an alternative approach to make a two-dimensional displacement map using intensity information instead of the phase. However, there is limitation in that the offset tracking requires very intensive computation power and time. In this paper, efficiency of parallel computing has been investigated using high performance computer for estimation of glacier velocity. Two TanDEM-X SAR observations which were acquired on September 15, 2013 and September 26, 2013 over the Narsap Sermia in Southwestern Greenland were collected. Atotal of 56 of 2.4 GHz Intel Xeon processors(28 physical processors with hyperthreading) by operating with linux environment were utilized. The Gamma software was used for application of offset tracking by adjustment of the number of processors for the OpenMP parallel computing. The processing times of the offset tracking at the 256 by 256 pixels of window patch size at single and 56 cores are; 26,344 sec and 2,055 sec, respectively. It is impressive that the processing time could be reduced significantly about thirteen times (12.81) at the 56 cores usage. However, the parallel computing using all the processors prevent other background operations or functions. Except the offset tracking processing, optimum number of processors need to be evaluated for computing efficiency.

Dubins Path Generation and Tracking of UAVs With Angular Velocity Constraints (각속도 제한을 고려한 무인기의 Dubins 경로 생성 및 추적)

  • Yang, You-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • In this paper, we propose a path generation and tracking algorithm of an unmanned air vehicle in a two-dimensional plane given the initial and final points. The path generation algorithm using the Dubins curve proposed in this work has the advantage that it can be applied in real time to an unmanned air vehicle. The path tracking algorithm is an algorithm similar to the line-of-sight induction algorithm. In order to efficiently control the direction angle, a gain related to the look ahead distance concept is introduced. Most of UAVs have the limited maximum curvature due to the structural constraints. A numerical simulation is conducted to follow the path generated by the sliding mode controller considering the angular velocity limit. The path generation and tracking performance is verified by comparing the suggested controller with conventional control techniques.

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.