• Title/Summary/Keyword: Sight Distance

Search Result 199, Processing Time 0.026 seconds

A Study on the Radio Wave Propagation Model in IMT-2000 (IMT-2000 주파수대역에서의 전파-전파 모델에 관한 연구)

  • Ra, Yoo-Chan;Lee, Seung-Woo;Shin, Hong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.224-231
    • /
    • 2003
  • In this in this thesis, we have proposed the Kor-231 which compared with Hata by dividing 4 classes and 8 details, which based on that the area subdivision which is defined by the City planning Regulation of Korea classified on its rate of building-to-land, floor area and distance between buliding and botanical coefficient. The experiments are carried out at the point of the RMS delay spread and the recerived power in the two kinds of geographical areas, LOS(Line of Sight) and N-LOS(Non Line of Sight). When the measured result is compared with Kor-231 model, we can catch the result that received power are 25.5dB and 14.5dB, the RMS delay spread are 101ns and 35ns and N-LOS received power are 4.1dB and 1.6dB. So we have certified that it is well due to the result analyzed into the difference of the RMS delay spread from 74ns to 200ns.

Indoor Wi-Fi Localization with LOS/NLOS Determination Scheme Using Dual-Band AP (이중대역 AP를 이용한 LOS/NLOS 판별 및 실내 위치 측위 기술)

  • Kim, Kangho;Lee, Suk Kyu;Jung, Jongtack;Yoo, Seungho;Kim, Hwangnam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1643-1654
    • /
    • 2015
  • With standardization of IEEE 802.11n, APs with the 2.4GHz and 5GHz dual-band capability have widely been deployed over a metropolitan area by individuals and internet service providers. Moreover, due to the increasing attentions on indoor-localization technique using Wi-Fi, the need for LOS and NLOS determination scheme is increasing to enhance accuracy of the localization. In this paper, we propose a novel LOS/NLOS determination technique by using different radio attenuation characteristics in different frequency bands and different mediums. Based on this technique, we designed a LOS/NLOS-aware indoor localization scheme. The proposed LOS/NLOS determination algorithm can be used when the distance between an user device and an AP is unknown, and the proposed localization scheme provides very accurate room-level position information. We validated the proposed scheme by implementing it on Android smart phones.

The Compensation Algorithm for Localization Using the Least-Squares Method in NLOS Environment (NLOS환경에서의 최소자승법을 적용한 위치인식 보정 알고리즘)

  • Jung, Moo-Kyung;Choi, Chang-Yong;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.309-316
    • /
    • 2012
  • The compensation algorithm for localization using the least-squires method in NLOS(Non Line of Sight) environment is suggested and the performance of the algorithm is analyzed in this paper. In order to improve the localization correction rate of the moving node, 1) the distance value of the moving node that is moving as an constant speed is measured by SDS-TWR(Symmetric Double-Sided Two-Way Ranging); 2) the location of the moving node is measured using the triangulation scheme; 3) the location of the moving node measured in 2) is compensated using the least-squares method. By the experiments in NLOS environment, it is confirmed that the average localization error rates are measured to ${\pm}1m$, ${\pm}0.2m$ and ${\pm}0.1m$ by the triangulation scheme, the Kalman filter and the least-squires method respectively. As a result, we can see that the localization error rate of the suggested algorithm is higher than that of the triangulation as average 86.0% and the Kalman filter as average 16.0% respectively.

Study on optical emission spectroscopic method for measuring OH radical distribution in rocket plume (로켓 플룸 내부 OH 라디칼 공간분포 계측을 위한 발광 분광 기법에 관한 연구)

  • Han, Kiwook;Hahn, Jae W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1135-1139
    • /
    • 2017
  • Spatial distribution of chemical species in flame is a important indicator understanding the flame structure and combustion characteristics, and optical emission spectroscopy has been widely used for the measurement because of its simple and non-intrusive methodology. In this study, we suggest the feasibility of the measurement of chemical species (OH radical) distribution in rocket plume using optical emission spectrometer which was developed for the spatially resolved measurement along the line-of-sight. In order to predict the ground state concentration of species from the measured emission intensity by optical emission spectrometer, we consider thermal and chemical excitation mechanisms in flame, and assume thermodynamic equilibrium for the thermally excited species. We also present the spatial resolution and the correction of collection characteristics of the optical emission spectrometer depending on object distance.

  • PDF

Location Error Compensation in indoor environment by using MST-based Topology Control (MST 토폴로지를 이용한 실내 환경에서의 위치측정에러의 보상기법)

  • Jeon, Jong-Hyeok;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1926-1933
    • /
    • 2013
  • Many localization algorithms have been proposed for Wireless Sensor Networks (WSNs). The IEEE 802.15.4a-based location-aware-system can provide precise ranging distance between two mobile nodes. The mobile nodes can obtain their exact locations by using accurate ranging distances. However, the indoor environments contain various obstacles which cause non-line-of-sight (NLOS) conditions. In NLOS condition, the IEEE 802.15.4a-based location-aware system has a large scale location error. To solve the problem, we propose location error compensation in indoor environment by using MST-based topology control. Experimental and simulation results show that the proposed algorithm improves location accuracy in NLOS conditions.

Measurement of LPWA communication coverage in NLOS environment (NLOS 환경에서 LPWA 통신 커버리지 측정)

  • Kwon, Hyuk;Jin, Kyoung-Bog;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.591-593
    • /
    • 2019
  • LPWA has a small amount of data that can be transmitted at one time, but it can collect a very wide range of information, so it is suitable for gathering information of apartment meter or collecting data intermittently sent from industrial site. However, most of the application studies on LPWA are limited to outdoor, especially LOS environment, so it is difficult to collect information for application to apartment and industrial sites. In this paper, we have measured the communication coverage within the building, which is a NLOS environment, so that LPWA communication can be applied to apartments and industrial sites. For the experiment, LoRa module was created using sx1276, Class A was applied, and the spread factor was changed for each layer. As a result, in case of spreading factor 7 that shows increasing error and losses from the 7 floor, but the in case of spreading factor 12, the data could be seamlessly received even on the 9th floor without error and losses.

  • PDF

Gas kinematics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.61.4-62
    • /
    • 2020
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (~42.4" × 12") spatial; ~1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into kinematically cold, warm or hot ones with respect to their velocity dispersion: 1) cold: < 4 km/s, 2) warm: 4 ~ 8 km/s, 3) hot: > 8 km/s. We then derive the Toomre-Q parameters of NGC 6822 using the kinematically decomposed H I gas maps. We also correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The kinematically cold component is likely to better follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Research on Antennas Placement of Line-of-sight Datalink for Transport Drone (수송드론 가시선 데이터링크 안테나 배치 방안 연구)

  • Sung-Ho Lim;Kilyoung Seong;Jae-Kyung Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • The antenna radiation pattern was simulated by arranging the mounted antennae of the transport drone in 5 locations where radio interference was expected to be low, and they could be mounted. Depending on the mounting location, the probability that the link margin was less than 0 dB was (5.41 - 26.92) %. When two antennae were mounted and one was selected, the probability was (0.11 - 3.3) %. Among the arrangements, placing one antenna in the upper part of the front and one in the lower part of the rear showed the lowest link fail probability. In this case, it was analyzed that if the attitude roll and pitch of the aircraft were limited, link fail would not occur at an operating distance of 12 km or less. An antenna selection formula for this case was derived, and a method of reducing frequent alternation of antennae was applied to maintain a stable link.

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.

Convergence Technologies by a Long-term Case Study on Telepresence Robot-assisted Learning (텔레프리젠스 로봇보조학습 사례 연구를 통한 융합기술)

  • Lim, Mi-Suk;Han, Jeong-Hye
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.106-113
    • /
    • 2019
  • The purpose of this paper is aimed to derive suggestions for convergence technology for effective management of distance education by analyzing a long-term case. The experiment was designed with notebook, smartphone or tablet based robot controlled by a remote instructor and a learner, who have experience of distance learning including robot assisted learning. The tablet based robot has the display system of feedback to speakers. During five months, three types of experiments were conducted randomly and a participant was interviewed thoroughly. The result, like the previous research, demonstrates that the task performance of the learner in telepresence robot-assisted learning was better than that in the notebook, and smartphone based. However, it is believed to be necessary to adjust the system for eye-contact and voice transmission for the remote instructor. The instructor required an additional sight by supplementing an extra camera and automatic direction control to source of sound.