• Title/Summary/Keyword: Sieve

Search Result 527, Processing Time 0.023 seconds

A Study on Developing the Draft of International Standard for the Determination of Perchlorate in Soil Using Ion Chromatography (이온크로마토그래피를 이용한 토양 중 퍼클로레이트 정량에 관한 국제표준(안) 연구)

  • Choi, Cheon-il;Lee, Goon-taek;Park, Min-ki;Jeong, Moon-ju;Kim, Ji-yang;Kang, Ji-young;Ryu, Ji-young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.55-61
    • /
    • 2015
  • Based on the literature study for the determination of perchlorate in soil we chose the ion chromatography as a measurement method and decided to use 70 mM KOH as an eluent to avoid the interference derived from the co-elution of pyrophosphate (P2O74−), tripolyphosphate (P3O105−). Also we proposed to use air dried soil through 0.15 mm sieve and distilled water as an extractant. Under the these basic concepts, we carried out the experiments to set up the detail procedure like solid to liquid ratio (S/L ratio), extraction time, device for extraction and indicating factors for quality control (e.g. precision, accuracy, MDL, LOQ). In case of time and device for extraction, 5 hours of mechanical shaking or 1 hour of centrifugation showed better precision and accuracy than that of sonication for 1 hour According to these results, we proposed the extraction method combining 5 hours of mechanical shaking with 1 hour of centrifugation. From the aspect of S/L ratio, the ratio of 1/2 or 1/3 showed resonable precision and accuracy. In case of the ratio of 1/2, there would be some problems in the separation process when the proportion of fine particle is high. Therefore, we proposed the extraction ratio of solid to liquid as 1/3 instead of 1/2. With the consideration of cost effectiveness and soil salinity, we proposed the use of cartridge for removing the interfering anions like chloride, sulfate and carbonate in specific sample such as saline soil.

A Tracer Experiment of Sediment Transport Path Using Fluouescent-Tagged Sands (형광사를 이용한 표사이동경로 추적 실험)

  • Jeong, Sin-Taek;Jo, Hong-Yeon;O, Yeong-Min;Kim, Chang-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.547-555
    • /
    • 1999
  • The economical manufacturing process of fluorescent sediments (FS) which makes use of the understanding of coastal sediment path has been suggested with respect to the Lagrangian viewpoint. First, the fluorescent liquids were made by the mixing of the fluorescent materials, acetone, and xylene. Second, the sediments collected in Gamami beach were desalinized by the freshwater washing, dried indoors to protect the fine-sediment scattering, and classified by the sieve analysis. Finally, the FS which have seven different colors were manufactured by the mixing of fluorescent liquids and prepared sediments. The FS were used to figure out the major sediment supply routes of the intake channel in the YoungKwang nuclear power plant. From the field experiments, it was shown that the sediments were suspended and dispersed by the strong seasonal NW wind and the tide, and the sediments in suspension were flowing into the intake channel due to very strong suction speed. All the FS injected in stations were detected in the channel sampling points, thus we concluded that the sediments in suspension and dispersion were flowing into the intake channel from all directions in adjacent coastal zone.

  • PDF

Use of By-product Hydrated Lime as Alkali Activator of Blast Furnace Slag Blended Cement (고로수쇄(高爐水碎)슬래그 혼합(混合)시멘트의 알칼리 자극제(刺戟劑)로 부산소석회(副産消石灰)의 활용(活用))

  • Cho, Jin-Sang;Yu, Young-Hwan;Choi, Moon-Kwan;Cho, Kye-Hong;Kim, Hwan;Yeon, Kyu-Seok
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.33-44
    • /
    • 2010
  • In this study, the possibility of utilizing carbide lime waste, obtained from the generation of acetylene process, as a alkali activator of blast furnace slag cement was investigated. The physical and chemical analysis of the carbide lime waste was studied and three types lime waste in order to investigate behaviour as alkali activator were used. Lime wastes were added 0, 10, 20 and 30 wt.% in blast furnace slag and blast furnace slag containing lime waste were added 0, 10, 30 and 50 wt.% in OPC. As a result of analysis of hydration properties, in the case of calcium hydroxide rehydrated after heat treatment at $800^{\circ}C$, it was higher hydration rate than other specimens. For the results of compressive strength test, when lime waste passed 325 mesh sieve and rehydrated calcium hydroxide were used, it was higher compressive strength than OPC from hydration 7days. At OPC50 wt.%-BFS45 wt.%-AA5 wt.% system using lime waste of 325 mesh under, the highest compressive strength appeared.

Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do (강원도 간성지역에 분포하는 화강풍화토의 도로토공 재료특성 연구)

  • Jeoung, Jae-Hyeung;Yu, Jun;Kim, Jin-Man;Kim, Seung-Hyun;Lim, Kwang-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Upon encountering weathering soil at a construction site, it may be necessary to change the design and construction plans for geotechnical structures. When weathering soil is exposed to air, the weathering process proceeds rapidly, resulting in significant damage to geotechnical structures, particle defects, and an increase in moisture sensitivity. The management of weathering-soil compaction is challenging. Because the engineering properties of weathering-soils vary regionally, it is important to report the result of research into the regional characteristics of such soils. At two locations of granite gneiss in the Gansung area of Gangwon-do, geological studies were performed at 22 and 8 sites, respectively. At each site, test samples were collected for analysis by XRD and to measure particle size, consistency, and compaction. To evaluate the suitability of the material for road subgrade, we examined the interrelationship between CBR value and the uniformity coefficient, the 200 sieve passing ratio and the aggregate ${\geq}$ 2 mm) content. We found that for the weathered granite soil, aggregate sized > 2 mm has a significant effect on the CBR value. In addition, the mixing of aggregate sized > 2 mm with sub-quality soil improves the soil condition.

A Study on the Treatment of Oil Contaminated Soils with Micro-nano Bubbles Soil Washing System (유류오염토양 처리를 위한 마이크로나노버블 토양세척에 관한 연구)

  • Choi, Ho-Eun;Jung, Jin-Hee;Han, Young-Rip;Kim, Dae-Yong;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1329-1336
    • /
    • 2011
  • The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).

Evaluation of Bottom Ash on the Application for the Aggregate of Concrete (콘크리트용 골재로서의 Bottom Ash 활용성 평가)

  • Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • In this study, as one of solutions associated with the shortage of treatment area of industrial waste and the containment of its harmful components, the bottom ash which is known to be by-products of thermoelectric power plant was selected and its applicability for aggregate of concrete mixture was measured. Hardness test, sieve analysis, water-absorption test and SEM analysis were carried out to investigate the possibility of using bottom ash as a replacement of coarse and fine aggregate. Chemical analyses such as ignition loss test and X-ray incidence were carried out also. In addition, values for slump, strength, permeability, freeze and thaw, and carbonation were evaluated in terms of effects of replacement ratio of bottom ash. As the results, it was found that, though bottom ash is in short supply of fine particles and is in lack of cohesion, these problems can be solved by partially mixing with natural aggregates or improving in a process of production. In addition, bottom ash has not only advantage of durability but also acquirement of general compressive strengths in case that a certain proportion of natural aggregate is applied to mixture, in spite that unit water or chemical admixture should be increased to acquire good workability due to plenty of porosity.

  • PDF

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

A Grain Size Analysis of Bottom Sediments of Yeongil Bay, Korea (한국 영일만 해저퇴적물의 입도분포)

  • Park, Byong-Kwon;Song Moo-Young
    • 한국해양학회지
    • /
    • v.7 no.2
    • /
    • pp.74-85
    • /
    • 1972
  • This paper studied the grain size distribution of bottom sediments of Yeongil Bay which is located at the southeastern part of the Korean Peninsula. Sixty four samples collected with snapper and dredger are analyzed by roe Tap Sieve Shaker and Pipette Method. The moment parameters are calculated with the method of Friedman(1961). Most samples are composed of sand size sediments and a few samples are composed of silt and clay. The Yeongil Bay can be divided into gravel-granule zone, sand zone, and silt-clay zone. The sediments near Yeonam- Dong and Hyongsan river are moderately sorted and others are very poorly sorted according to scheme of Friedman91962). In general, sorting values are ranged from 1.0 to 3.5. The samples near Janggigap and Masin-Dong show negative and others show positive skewness values. Skewness values are ranged from -1 to 2. All samples show the leptokurtic distribution except for the samples near Masin- dong and at the deepest place near Janggigap. Kurtosis values are ranged from -1.5 to 21.9. The samples of gravel-granule zone contain more than 50% and those of silt-clay zone contain less than 50% of CaCO$\_$3/. Four different colors, black, yellow, brown and gray, are shown in the sediments of Yeongil Bay.

  • PDF

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF