• Title/Summary/Keyword: Sidewalk

Search Result 142, Processing Time 0.024 seconds

A Study on Planning of Roadside Green for Enhancing Urban Green Network (도시녹지 네트워크 강화를 위한 가로녹지 조성계획 연구)

  • Han, Bong-Ho;Kwak, Jeong-In;Park, Seok-Cheol;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.128-141
    • /
    • 2014
  • This study established a plan to establish the roadside green for enhancing the urban green network and enhancing of urban greenery in Songpa-gu. As for the present conditions of the streets, that of the parks, the green axes, sidewalk in Songpa-gu were analyzed. This study derived 19 parks by the roadside and 13 lines to connect green axes. The result of roadside greenery status were selected 56,546m lines by natural green space and constructed green space. The result of sidewalks width were selected 8,600m lines that sidewalks width more than 5m for enhancing urban green network in Songpa-gu. For enhancing the urban green network lines were selected: Olympic Expressway, Songpa-daero, Nambusunhwan-no and Wiryeseong-gil. To improve the street planting strips, two plans were suggested: to improve the green structures of the street planting strips mainly with shrubs and to effectively create street planting strips through the green spaces along the streets. A plan to promote the amount of planting street trees in Songpa-gu analyzed the streets. Complements the understory layer sections were the highest the entire length of 34,206 m of 63.6% in strengthening for network streets. Greenspace network streets were calculated for planting of volume by promotion plan. Planting volume increased 4,708 trees before expand planting plan, so the total tree was considered 9,518 trees.

Performance Evaluation of Paving Blocks Based Ambient Temperature Reduction Using a Climatic Environment Chamber (기후환경챔버를 활용한 블록의 공기온도 저감 성능평가)

  • Ko, Jong Hwan;Park, Dae Geun;Kim, Yong Gil;Kim, Sang Rae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • This study evaluated the reduction performance of ambient temperature and the amount of evaporation that takes place depends on the temperature difference of paving blocks which are used in the sidewalk, roadway, parking lot, park, plaza, and etc. The water-retentive block of the LID (Low Impact Development) practice was compared with the conventional concrete block. For the quantitative performance evaluation, experiments were performed in a climatic environment chamber capable of controlling the climatic environment (solar radiation, temperature, humidity, rainfall, and snowfall). The method for performance evaluation was proposed using temperature, humidity, and ambient air of paving blocks which changes according to the solar radiation and the wind speed after the rainfall. As a result, the evaporation amount of the water-retentive block was 2.6 times higher than that of the concrete block, the surface temperature of water-retentive block was $10^{\circ}C$ lower than the concrete block, and the air temperature of water-retentive block was $4.6^{\circ}C$ lower than the concrete block. Therefore, it is analyzed that the water-retentive block with a large amount of evaporation is more effective in reducing the urban heat island phenomenon as compared with the concrete block.

Pedestrian Accident Rate Models of Circular Intersection Near Schools (학교와 인접한 원형교차로의 보행자 사고율 모형)

  • SON, Seul Ki;LEE, Min Yeong;PARK, Byung Ho
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.321-331
    • /
    • 2017
  • The objective of this study is to analyze the factors affecting the pedestrian accidents of roundabout near schools. To this end, this study has focus on the comparative analysis of pedestrian accidents across different school areas. The traffic accident data from 2007 to 2014 are collected from TAAS data set of Road Traffic Authority. To develop the pedestrian accident rate model, the linear regression model has been utilized in this study. 28 explanatory variables such as geometry and traffic volume factors are used. The main results are summarized as follows. First, the null hypotheses that the number of pedestrian accidents are the same are rejected. Second, 5 multiple linear regression accident models with higher statistical significance (adjusted $R^2$ of 0.651~0.788) have been developed. Third, while the common variables of 3 models (model I~III) related to school location are evaluated to be the pedestrian island, crosswalk, types of roundabout, elementary school and bus stop. Fourth, while the common variable of 3 models (model III~V) related to near school area or not is evaluated to be pedestrian island, type of roundabout, sidewalk, elementary school, speed hump, speed limit sign and number of entry lane. As a result, the installation of pedestrian islands and crosswalk might be expected to decrease the number of pedestrian accidents near schools.

Care-giver's Needs and Evaluation on the Actual Condition of the Playgrounds in Child Care Facilities (보육시설의 실외놀이 환경실태 및 환경특성에 대한 교사의 평가와 요구)

  • Choi, Mock-Wha;Byun, Hea-Ryun
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.105-114
    • /
    • 2008
  • The purpose of this study is to classify playground types according to the physical characteristics of playgrounds in child care facilities, to analyze the needs of care-givers and to evaluate the adequacy of playgrounds according to playground types. The specific areas discussed in this study were the evaluation of the adequacy in the physical characteristics of playgrounds for children's outdoor play activities by the care-givers, who assist in the outdoor play activities of children and manage safety in the playground, and a report on playground requirements of them. Data was collected from field survey carried out to investigate the physical characteristics of playgrounds of 21 child care facilities. This survey incorporated a structured-questionnaire for the purpose of evaluating the adequacy of the physical characteristics of playgrounds (location and size of the playground, play equipments, the composition of play areas, ground covers, and location of sidewalk in the playground) by the 181 care-givers from the facilities and investigating the needs of them. The major results showed the following. 1) In field survey, it was observed that while the location and the size of the playgrounds varied widely, ground cover, play equipments, and the composition of play area turned out to be identical, regardless of the location and the size of the playgrounds. 2) The playgrounds were classified into five types according to the number of children and the size of the playground. The five types include A-type as a large-scale facility/smallsize playground, B-type as a small-scale facility/large-size playground, C-type as a small-scale facility/small-size playground, D-type as a middle-scale facility/large-size playground, and E-type as a large-scale facility/large-size playground. 3) The adequacy of the physical characteristics of playground in the D-type was evaluated to be higher than that of the other types. The adequacy of the C-type playground was evaluated to be lower than that of the other types in terms of size and the composition of play areas within the playground. 4) The care-givers of the D-type and the E-type playground expressed a desire to install various play equipments, while the care-givers of the C-type playground did not wish to install play equipment. 5) Various outdoor play areas were needed in the D-type playground.

Basic Study on the Characteristics of Wooden Sidewalk Pavement Material using Wood Waste Chip (폐목재 칩을 활용한 목질계 보도포장재의 특성에 대한 기초연구)

  • Choi, Jae Jin;Song, Jin Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.413-420
    • /
    • 2011
  • An experiment was conducted to suggest the road pavement material combining wooden chip crushed from little useful roots and branches from logging sites or wood waste from construction sites with urethane resin. For the specimen, the mass ratio of urethane resin to construction wood waste chip/lumber waster chip was set to three different levels of 0.5, 0.75, and 1.0, which was measured, mixed with mixer, and molded; 7 days after, tensile strength test, elasticity test using golf balls and steel balls, permeability coefficient measurement, and flammability test were executed. As the result, the tensile strength of the specimen at the dry state in the air exhibited the range of 0.2-1.1MPa, and there was no change after 7 days of aging. When submerged in water, however, the strength was partially diminished; the diminishing rate was greater for less urethane resin usage, and therefore it appears desirable to set the mass ratio of resin to the wood waste chip over 0.75 to consider the moisture intrusion by precipitation and such. As the result of elasticity test, the GB and SB coefficients of the specimen using wood waste chips and urethane resin were measured to be low at below 20%, exhibiting excellent elasticity as road pavement material. Also, the permeability coefficient was over 0.5mm/sec for specimens of all combinations, exceeding the standard value required after construction for permeable pavement material, and the flammability of wood-type pavement material was evaluated to have no practical issues.

Development of block-type sidewalk pavement system using snow-melting system (융설시스템을 이용한 조립식 보도포장 기술 개발)

  • Park, Kyungmo;Lee, Jeonguk;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.136-143
    • /
    • 2015
  • Snow-melting system has been applied not only to roads for car traffic but also to pavement for the pedestrians safety reason in some of the developed countries such as USA and Canada based on countermeasures against Natural Disasters Act revised in 2000. Even though this system was introduced in korea in 2006 and has been partly applied to car traffic roads, there is few places that the system has been applied. Therefore, in this research a snow-melting system with a block-type to cover a pavement that efficiently transfers heat form heat rays to the top of a pavement and protects the heat rays. A quality check showed that compression and bending strength was improved approximately 5 times stronger and 7 to 10 times more absorption rate than the KS(Korea Industrial Standard) requirement. Moreover, only 10 minute was required to increase temperature above zero with a block-type snow-melting system whereas approximately 180 minute was spent with the existing system. This research is expected to contribute to environmental issues and reduce accidents on a slippery road.

Analysis of Intercepted Flow according to Change of Flow Width in Gutter (도로 흐름폭 변화에 따른 차집유량 분석)

  • Joo, Dong Won;Kim, Jung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • In dense cities, which are covered by many impermeable areas, rainwater flows quickly along the roads and collects in certain areas. The surface runoff that fails to get intercepted by the roadside rain gutters results in a wider flow of water along the sides, which in turn increases the amount of water on the road and causes traffic congestion as well as accidents due to slippage. Based on these issues, this study was carried out in order to propose an intercepted flow calculation formula. To this end, the maximum longitudinal slopes of arterial roads and expressways were reflected to depict a road condition of 2~10 %, while a general traverse slope of 2 % was selected for the traverse slope on the side. As for the road lane condition, two, three, and four lanes were chosen for the area from the centerline to the sidewalk. As for the experimental flow rate, the rainwater runoffs at the actual design frequency of 5, 10, 20, and 30 years for road conditions were converted into experimental flow rates, and as a result, flow rates ranging from 1.36 l/s to 3.96 l/s were divided into ten flow rates for a hydraulic experiment. Also, an equation taking into consideration the inflow velocity and flow width along the roadsides was proposed. The results of the experiment showed an increase in flow width and a decrease in interception rate. Also, the inflow velocity at a traverse slope of 2 % was measured, while increasing the longitudinal slope. Accordingly, an equation for calculating the flow intercepted by rain gutters at a flow width reflecting the longitudinal slope of the road and rainwater runoff, according to the design frequency, was derived by performing a regression analysis using IBM SPSS Statistics 24. It is deemed that the equation derived in this study will be useful in designing rain gutters for roads.

The Effects of Street Tree's Vertical Structures on Thermal Comfort (열쾌적성에 대한 가로수 수직적 구조의 영향 분석)

  • Lee, Su-Been;Choe, Hye-Yeong;Jo, Hyun-Kil;Yun, Young-Jo;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • Urban green spaces offer a variety of benefits to living things and humans. However, existing green spaces have been reduced and fragmented due to urbanization, and there is a limit to creating new large green spaces in densely developed cities. Street trees have fewer restrictions on land use, which can be a measure to secure green areas in cities. In Korea, excessive pruning is being done on some street trees for reasons such as blocking of building signboards, contact with electric wires, and restrictions on sidewalk widths. Therefore, it is necessary to quantitatively understand the relationship between the benefits provided by street trees and their structures to come up with an efficient and systematic planning and management plan for urban street trees. In this study, we quantitatively analyzed the relationship between the thermal comfort improvement by the shades of street trees and the vertical structure, planting environment, and types of street trees. To calculate the thermal comfort felt by human body, we calculated UTCI (Universal Thermal Climate Index) of each street tree. For the vertical structure of street trees, we used Terrestrial LiDAR and the point clouds of street tree's crown was sliced vertically at 1m intervals. We conducted a multiple regression analysis on the thermal comfort improvement using the variables we obtained from fields. As a result, in the case of a street tree's vertical structure, the lager the volume of tree's crown located 3-4m (β=0.298, p<.05) and 6-7m (β=0.568, p<.001) above clear length, the better the cooling effect. In addition, the thermal comfort improvement was assessed to decrease as the DBH increased (β=-0.435, p<.001). In general, the crown diameter and DBH are positively correlated, with a cooling effect occurring as crown diameter increases. In this study, the opposite result was obtained due to the small number of trees measured, so additional research is needed by increasing the number of tree samples. In the case of the planting environment, the effect of improving thermal comfort was higher in the shaded area of trees planted to the south (β=-0.541, p<.001). Since unsystematic management of street trees can deteriorate the function of them, quantitative evaluations of the vertical structure of street trees are required, which can provide specific measures for planning and management of urban street trees with thermal comfort effect.

Development of an abnormal road object recognition model based on deep learning (딥러닝 기반 불량노면 객체 인식 모델 개발)

  • Choi, Mi-Hyeong;Woo, Je-Seung;Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.149-155
    • /
    • 2021
  • In this study, we intend to develop a defective road surface object recognition model that automatically detects road surface defects that restrict the movement of the transportation handicapped using electric mobile devices with deep learning. For this purpose, road surface information was collected from the pedestrian and running routes where the electric mobility aid device is expected to move in five areas within the city of Busan. For data, images were collected by dividing the road surface and surroundings into objects constituting the surroundings. A series of recognition items such as the detection of breakage levels of sidewalk blocks were defined by classifying according to the degree of impeding the movement of the transportation handicapped in traffic from the collected data. A road surface object recognition deep learning model was implemented. In the final stage of the study, the performance verification process of a deep learning model that automatically detects defective road surface objects through model learning and validation after processing, refining, and annotation of image data separated and collected in units of objects through actual driving. proceeded.

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.