• Title/Summary/Keyword: Sidelobe Level

Search Result 95, Processing Time 0.022 seconds

Design of Three-stacked Microstrip Patch Array Antenna Having Tx/Rx Feeds For Satellite Communication (위성통신을 위한 송수신 겸용 삼중 적층 마이크로스트립 패치 배열 안테나 설계)

  • Park, Ung-Hee;Noh, Haeng-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.853-859
    • /
    • 2007
  • This paper presents a microstrip patch array antenna having transmission feed and reception feed for satellite communication in the Ku band. In this paper, the element of the patch array antenna is a three-stacked structure consisting of one radiation patch and two parasitic patches for high gain and wide bandwidth characteristics. To obtain higher gain, the unit elements are expanded into a $1{\times}8$ may using a mixture of series and parallel feeds. The proposed antenna has horizontal polarization for the Rx band and vertical polarization for the Tx band. To verify the practicality of this antenna, we fabricated a three-stacked patch array antenna and measured its performance. The gain of the array antenna in the Rx and Tx bands exceeds 17 and 18 dBi, respectively. The impedance bandwidth is over 10 % in both bands. The cross-polarization level is below -25 dB, and the sidelobe level is below -9.4 dB.

Design of Microstrip Array Antenna for Satellite Reception (위성수신용 마이크로스트립 어레이 안테나 설계)

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, the microstrip array antenna is studied to replace the parabolic antenna in the direct satellite reception. A microstrip array antenna has been used in extremely limited area, but if it is applied to practical life like a direct satellite reception antenna, we expect that it will be used in various way. First of all, if we use a microstrip array antenna for a direct satellite reception antenna, it should be guaranteed characteristics of broadband frequency. Therefore, the goal of this paper is designing technique an antenna which guarantees broadband frequency band for a direct satellite reception. In this paper, the proposed microstrip antenna is fed by orthogonal two feed lines to a rectangular patch and a sequentially rotated feeding technique is designed proposed for a good axial ratio in broadband frequency band. The rectangular patch is designed to satellite reception band, and the width and length are W=L=8.9 mm ($0.352{\lambda}o$) respectively. The antenna's ground plane has dimensions of $250{\times}250mm$. The experimental results verify that the proposed antenna had the axial ratio of above 1dB broader than that of the conventional feeding antenna. In order to verify the performance, a $8{\times}8$ array having two pairs was fabricated and tested. The maximum gain is 20.8 dB, the sidelobe level confirm less than -10 dB. It is verified by link budget calculation that C/N=6.7 dB can be obtained for domestic use if this proposed antenna is used in Koreasat reception system.

Matched Field Processing Experiment in the East Sea of Korea Characterized by Short Period Fluctuating Temperature: MAPLE 0310 (수온의 단주기 변동이 있는 동해에서의 정합장처리 실험 : MAPLE 0310)

  • Kim Seongil;Hong Jun-Suk;Kim Eui-Hyung;Kim Young-Gyu;Park Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.317-324
    • /
    • 2005
  • Detection and localization of a quiet target in shallow water environments is a challenging problem because of the complicated acoustic Propagation and the Prevalence of loud surface ship interference. Matched Field Processing (MFP) can help address the concern by using a Propagation model to determine the steering vectors, thus Providing optimal away gain and localization accuracy. However, Performance of MFP have yet realized in practice, for several reasons. The most important limitation is that precise information on the underwater environments is generally not available. To examine the Performance of MFP in the East Sea of Korea, we have accomplished a series of matched acoustic Properties and localization experiment (MAPLE). We analyzed the array data measured from MAPLE which is accomplished using a vertical line array and a towed acoustic source off the east cost of Korea in Oct. 2003. We localized the acoustic source using MFP. It is well known that the temperature structure in the experimental site is affected by the short period fluctuation such as internal wave. In this paper, it is found that the sidelobe level on the MFP ambiguity surface is increased being affected by the short period fluctuation.

Shipboard Active Phased Array Antenna System for Satellite Communications (위성 통신용 선박 탑재 능동 위상배열 안테나 시스템)

  • 전순익;채종석;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1089-1097
    • /
    • 2002
  • In this paper, the novel shipboard Active Phased Array Antenna(APAA) system for maritime mobile satellite communications is introduced. The antenna uses novel technologies like wide range hybrid tracking, single antenna elements with both of Rx and Tx, asymmetrical array structure, interference isolation between Rx and Tx, and error correction method from frequency scan effect. The antenna has single aperture for both of Rx and Tx with 32 $\times$ 4 two-dimensional array. The antenna has two beams. Its frequencies are 7.25 ~ 7.75 GHz for Rx and 7.9 ~ 8.4 GHz for Tx. The antenna gains are 35.4 dBi for Rx and 35.7 dBi for Tx, those are 54 % of efficiency. The electrically steering ranges are $\pm$35$^{\circ}$ of elevation direction and $\pm$4$^{\circ}$ of azimuth direction. The mechanical control ranges at hybrid tracking capability are continuous 360$^{\circ}$ of azimuth direction and $\pm$10$^{\circ}$ of elevation direction. The antenna has 2.2$^{\circ}$ of 3 dB beamwidth, -14 dB of sidelobe level, and 21 dB of cross-pol suppression. The antenna performance was measured by near field measurement set. Its system performance was tested on the ship motion simulator and with the satellite transponder simulator. The test result showed that its tracking error was within -3 dB from its peak gain under motion condition. The antenna system was tested by real modulated Direct Broadcasting Satellite(DBS) signals to check its communication processing function.

A Study on Estimation of a Beat Spectrum in a FMCW Radar (FMCW 레이다에서의 비트 스펙트럼 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2511-2517
    • /
    • 2009
  • Recently, a FMCW radar is used for the various purposes in the short range detection and tracking of targets. The main advantages of a FMCWradar are the comparative simplicity of implementation and the low peak power transmission characterizing the very low probability of signal interception. Since it uses the frequency modulated continuous wave for transmission and demodulation, the received beat frequency represents the range and Doppler information of targets. Detection and extraction of useful information from targets are performed in this beat frequency domain. Therefore, the resolution and accuracy in the estimation of a beat spectrum are very important. However, using the conventional FFT estimation method, the high resolution spectrum estimation with a low sidelobe level is not possible if the acquisition time is very short in receiving target echoes. This kind of problems deteriorates the detection performance of adjacent targets having the large magnitude differences in return echoes and also degrades the reliability of the extracted information. Therefore, in this paper, the model parameter estimation methods such as autoregressive and eigenvector spectrum estimation are applied to mitigate these problems. Also, simulation results are compared and analyzed for further improvement.