• Title/Summary/Keyword: Side-polished fiber Bragg grating

Search Result 4, Processing Time 0.02 seconds

Simultaneous Measurement of Temperature and Refractive Index of a Medium Using by a Side-Polished Fiber Containing a Fiber Bragg Grating (광섬유 브래그 격자가 포함된 측면 연마된 광섬유를 이용한 매질의 온도와 굴절률 동시 측정)

  • Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.513-517
    • /
    • 2015
  • We proposed and demonstrated a simultaneous measurement method to detect the refractive index and temperature of a medium using a side-polished fiber involving FBG (fiber Bragg grating). The temperature of a medium was obtained by using the Bragg wavelength shift of FBG, while the refractive index of medium were calculated by using the transmission loss. The Bragg wavelength is independent on the refractive index of the covering medium placed on surface of side-polished fiber, while the transmission loss at off-Bragg wavelength highly depends on the environmental temperature because of thermo-optic effect of the medium.

Simultaneous Measurement of External Refractive Index and Temperature by Using a Side-polished Fiber Bragg Grating with a Polymer Overlay (폴리머 코팅된 측면 연마 단주기 격자 기반 외부 굴절률 및 온도 동시 측정 센서 연구)

  • Kim, Hyun-Joo;Jun, Na-Ram;Lee, Sang-Bae;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.190-194
    • /
    • 2010
  • A hybrid grating sensing device based on a side-polished fiber Bragg grating (FBG) with a polymer overlay is proposed for simultaneous measurement of external refractive index and temperature. The side-polished FBG, which is insensitive to ambient index change, is utilized for detecting temperature variation, and the polymer overlay is coated on the side-polished FBG for measurement of ambient index change. The temperature sensitivities of the side-polished FBG and the polymer overlay were measured to be 0.01 nm/$^{\circ}C$ and -0.58 nm/$^{\circ}C$, respectively, in a temperature range from $30^{\circ}C$ to $100^{\circ}C$. The ambient index sensitivities of the polymer overlay were measured to be 498.8 nm/RIU in an ambient index range from 1.33 to 1.39, 694.9 nm/RIU from 1.39 to 1.42, and 1312 nm/RIU from 1.42 to 1.44.

Continuous Photonic RF True-time Delay Using a Side-polished Fiber Bragg Grating with Heating Electrode (측면 연마된 광섬유 브래그 격자를 이용한 연속적인 광학적 RF 실시간 지연)

  • Chae, Ho-Dong;Kim, Do-Hwan;Kim, Hyoung-Jun;Lee, Sang-Shin;Kim, Hyo-Kyeom;Lee, Kyu-Hyo;Kim, Kwang-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.591-596
    • /
    • 2004
  • In this paper, a photonic RF true-time delay based on a partially side-polished fiber Bragg grating with heating electrode has been proposed and fabricated. It features continuous voltage-controlled operation, requiring no mechanical perturbation and no moving parts. For an RF signal carried over an optical signal, the time delay has been obtained by controlling the voltage applied to the electrode and thus adjusting its reflection positions from the fiber grating via the thermooptic effect. The achieved time delay is about 100 ps with the electrical power consumption of 280 mW.