• Title/Summary/Keyword: Side lobe jamming

Search Result 6, Processing Time 0.02 seconds

Jamming Effect of Stand-Off Jammer to Main Lobe of LPI Radar (LPI 레이더에 대한 원격지원 재머의 주엽 재밍 효과)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.16-21
    • /
    • 2020
  • This paper describes the jamming characteristics of a stand-off jammer jamming the LPI radar. The LPI radar reduces the side lobes of the receiving antenna to reduce the effect of jamming. It is easy a radar to predict the effect of jamming on a self-protection jammer where the jammer is in the same position as the target. However, for stand-off jammer jamming at different locations from the target, the prediction of jamming effect is complex. In this paper, the jamming effect of LPI radar is analyzed using signal to jamming ratio and burn-through range. Also, when the antenna's side lobe decreases below -30 dB, the stand-off jamming effect in the side lobe direction is weak. So we proposed a new jamming method for the main lobe and analyzed the jamming effect. This study is expected to be useful for the design and operation of aircraft jammers.

Analysis of Adaptive Side-Lobe Canceller Algorithm for Fully Digital Active Array Radar (완전 디지털 능동배열 레이다의 적응형 부엽제거 알고리즘에 관한 연구)

  • Yang, Woo-Yong;Park, Min-Kyu;Hong, Sung-Won;Kim, Chan-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.375-382
    • /
    • 2018
  • To eliminate strong jamming signals, a radar acquires a relatively weak target signal by using a side-lobe canceller (SLC) algorithm. This paper presents a novel adaptive SLC algorithm that is applicable to a fully digital active array radar. First, a covariance matrix is obtained from the SLC beam. Then, an adaptive SLC coefficient is extracted after calculating the correlation matrix between the main beam signal and the SLC beam signal. Finally, the target signal is estimated and the jamming signal is removed through the operation with the main beam signal. The application results from simulated radar signals demonstrated that the proposed algorithm is effective in an SLC system. Moreover, we analyzed various considerations and improved systematic usability.

A Study on Look Error Estimation and Adaptive Array Angle Estimation (지향 오차 추정과 적응 배열 입사방향 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.155-162
    • /
    • 2011
  • It is using to incident angle estimation technique in order to target estimation in radar. This paper was estimated incident angle estimation for target using adaptive array incident angle and single look error incident angle estimation technique. We estimated signal incident angle of target to removal main lobe and side lobe to adaptive array incident angle technique. It is difficult to correctly target estimation because single look technique increase direction error of signal incident angle. In order to receive a desired target signal must be not almost look error between signal incident angle and look angle. we had decreased to occur a look error using delay time and single look condition to calculation a covariance when incident angle estimate. Through simulation, we show that the proposed incident angle estimation technique improves the performance of target estimation compared to previous method.

A Study on Wideband Adaptive Beamforming using Taylor Weighting and LSMI Algorithm (Taylor 가중치와 LSMI 알고리즘을 이용한 광대역 적응형 빔형성 연구)

  • Oh, Kwan-Jin;Lee, Hee-Young;Kim, Seon-Joo;Chung, Young-Seek;Cheon, Changyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.380-386
    • /
    • 2013
  • This paper represents an adaptive beamforming technique to suppress interference or jamming signals in wideband. In order to maintain low side lobe level(SLL) at an antenna element level, Taylor-weighting was used. Also, to make a nulling beam pattern toward jammer's directions in wideband, we used the modified Loaded Sample Matrix Inversion(LSMI) algorithm and Tapped Delay Line(TDL). To verify the proposed algorithm, we applied it to a rectangular array antenna. Finally, the results show beam pattern with low SLL and jammers suppression.

Optimization of Subarray Configurations in Linear Array Antenna Using Modified Genetic Algorithm (선형 배열 안테나에서 수정된 유전 알고리즘을 이용한 부배열 구조 최적화)

  • Kim, Jun-Ho;Kim, Doo-Soo;Kim, Seon-Ju;Yang, Hoon-Gee;Cheon, Chang-Yul;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.187-195
    • /
    • 2012
  • In this paper, we propose the optimization of subarray configurations for linear array to minimize the side lobe level (SLL) in sum beam pattern based on the genetic algorithm. The operations of genetic algorithm are modified to be applied to subarray configurations. Using the proposed method, we construct subarray structure with 16 irregular subarray elements from 40 linear array elements to minimize the SLL in sum beam pattern in case of applying the adaptive beamforming(ABF) to suppress the jamming power, whose the SLL is 10 dB lower than that of regular subarray configuration.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.