• Title/Summary/Keyword: Side Sway

Search Result 57, Processing Time 0.025 seconds

The study of correlations between clinical balance scales and balance performance monitor parameters in patients with adolescent idiopathic scoliosis (청소년기 특발성 척추측만증 환자의 임상적 균형 평가지수와 균형 수행 모니터 측정값의 상관성 연구)

  • Shin, Seung-Sub
    • PNF and Movement
    • /
    • v.8 no.3
    • /
    • pp.39-47
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the correlations between clinical balance scales and Balance Performance Monitor parameters in patient with adolescent idiopathic scoliosis (AIS). Methods : Twenty AIS subjects (age, $14.26{\pm}1.93yrs$; height, $160.56{\pm}7.98cm$; weight, $47.54{\pm}6.94kg$)were participated in this study. Postural sway(mean balance, sway angle, sway area, sway path, maximal sway velocity) were were evaluated by balance performance monitor. Measurements for clinical balance scales were Functional reach test (both side), the Lateral reach test (both side) and One leg standing test (both legs). Results : The results were as follows. There were positive strong correlation between major curve direction and left-right sway angle, sway path, maximal sway velocity. There were negative strong correlation between the functional reach and left-right sway angle, sway area, sway path, maximal sway velocity. And the lateral reach were also showed negative strong correlation parameters of balance performance monitor. One leg standing were negatively correlated with left-right sway angle, sway path, maximal sway velocity. Conclusion : The clinical balance scales will be useful tools for balance measurements, and basic tools for clinical setting for patient with AIS.

  • PDF

Anti-sway System for Automatic Container Terminal (자동화 컨테이너 터미널용 Anti-Sway 시스템)

  • 박경택;박찬훈;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.428-431
    • /
    • 2002
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. ropes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And main schemes are introduced and explained briefly.

  • PDF

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.64-71
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.143-151
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

The Effects of TENS Applied to Affected Lower Extremities on Balance in Stroke Patients

  • Lee, Kyu-Ri;Jang, Sang-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.255-262
    • /
    • 2014
  • PURPOSE: This study was to investigate the effectiveness of TENS on balance in stroke patients by analyzing some components such as foot pressure, limit of stability and velocity sway after providing somatosensroy input using TENS. METHODS: Twenty five subjects participated and were randomly divided into two groups, TENS group (n=13) and control group (n=12) by the computer program. Interventions were given to subjects 5 days a week for four weeks. TENS group were treated with TENS for 60 minutes in addition to the conventional therapy which included 30-minute exercise and rehabilitation ergometer training for 15 minutes. Control group performed only conventional therapy. TENS was applied on the skin of soleus, tibialis anterior, tensor fascia latae and vastus medialis in affected side. Foot pressure, limit of stability and velocity sway for balance test were measured using Biorescue. RESULTS: TENS group was significantly increased limit of stability and foot pressure in affected side more than control group. And in eye closed condition, TENS group was significantly decreased velocity sway more than control group. CONCLUSION: The application of TENS is effective to improve the somatosensory input of affected side and to increase the motor function and balance ability.

A Numerical Simulation of Hydrodynamic Interactions Between Two Moored Barges with Regular Waves (규칙파 중 계류된 두 바지선의 유체역학적 상호작용에 관한 수치시뮬레이션)

  • Lee, Sang-Do;Bae, Byung-Deug;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2016
  • In this study, two rectangular barges in close proximity were simulated to analyze the characteristics of motion responses due to hydrodynamic interactions. Using a numerical solution from DNV-GL SESAM, coupled stiffness matrix terms for these same FEM models were added to the multiple body modes in the surge direction. Potential theory was used to calculate the first order radiation and diffraction effects on the simulated barge models. In the results, the sheltering effect of the barges was not shown at 1.3 rad/s with hull separation of 20 m in transverse waves. The separation effect between the barges was more clear with longitudinal waves and a shallow water depth. However, sway forces were influenced by hull separation with transverse waves. The peaks for sway and heave motion and sway force occurred at higher frequencies as hull separation narrowed with longitudinal and transverse waves. Given a depth of 10 m, the sway motion on the lee side of a coupled barge made a significant difference in the range of 0.2-0.8 rad/s with transverse and oblique waves. Also, the peaks for sway force were situated at lower frequencies, even when incident waves changed.

Experimental Study of Motion Behavior of Side-by-Side Moored Two Floating Bodies Including Sloshing in Head Sea (선수파 중 슬로싱을 고려한 병렬배치된 두 부유체의 거동 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Sung, Hong-Gun;Hong, Jang-Pyo;Hong, Sa-Young;Hong, Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.46-52
    • /
    • 2012
  • The motions and drift forces of side-by-side moored FSRU and LNGC including the sloshing effect, were studied using experiments. The FSRU and LNGC contained LNG cargo tanks and the LNG sloshing could affect the motions and drift forces of the structures due to its coupling with floating body motion. The effect of coupling can vary with the LNG filling level, and the effect of the filling level was investigated. The coupling effect was stronger at lower filling level. It was confirmed that longitudinal sloshing influenced the surge and surge mean drift force in head sea. In addition, gap flow affected the sway and mean drift forces. Sloshing attenuated the sway and yaw excited by gap flow in side-by-side configuration.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

A Study on Dynamic Modeling and Vibration Analysis of Gantry Robot (겐트리 로봇의 동적 모델링 및 진동해석)

  • Cho, Chang-Je;park, Dong-Jun;Yang, Jun-Seok;koo, Young-mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • In general, gantry robot is very useful handling of heavy objects. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

Effects of Fleet-Angle on Sway Motions of a Cargo: Design Force Calculation (로프각이 화물의 진자운동에 미치는 영향: 설계력의 계산)

  • SHIN JANG-RYONG;PARK YONG-HYUN;GOH SUNG-HEE;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.77-86
    • /
    • 2005
  • Over the last 10 years, significant changes have taken place in the world of container shipping. The size and the speed of the quay-side crane have been increased considerably. As a result, the stiffness of a crane is decreased and the sway oscillation of cargo may become violent. The purpose of this paper is to determine the design force caused by the sway oscillation of the cargo, lifted by four ropes, with an initial fleet angle, and the governing equations of the lifting system for an anti-sway control system design.