• 제목/요약/키워드: Side Pressure

검색결과 1,809건 처리시간 0.026초

뇌동맥류 수술환자에게 적용한 두부체위가 두개강내압에 미치는 영향 (Effect of Head Elevation and Position on Intracranial Pressure(ICP) in the Neurosurgical Patient with a Cerebral Aneurysm)

  • 박혜자;최경옥;이병옥;정은주;유양숙
    • 대한간호학회지
    • /
    • 제27권3호
    • /
    • pp.503-509
    • /
    • 1997
  • This study was undertaken to identify optimal head elevation and position in the care of the neurosurgical patient with a cerebral aneurysm. The effects of 0°. 15° and 30° head elevation and three positions (supine, side tying position opposite to the operation site, and side tying position on the same side as the operation site) on ICP was studied in fourteen neurosurgical patients with cerebral aneurysms. The results are as follows : 1. The mean intracranial pressure was significantly lower when the patient's head was elevated at 30° as compared to 0° and 15°. 2. The mean intracranial pressure was significantly lower when the patient was positioned in the supine as compared to side tying position opposite to the operation site and side tying position on the same side as the operation site. The data indicate that head elevation to 30° and the supine position reduce ICP in neurosurgical patients with cerebral aneurysm.

  • PDF

The Influence of Auditory-Feedback Device Using Wearable Air-Pressure Insole on Spatiotemporal Gait Symmetry in Chronic Hemplegia

  • Heo, Ji-Hun;Song, Changho;Jung, Sangwoo
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권3호
    • /
    • pp.311-319
    • /
    • 2021
  • Objective: To investigate the effect of emphasized initial contact by using a wearable air-pressure insole to provide auditory-feedback with variations of maximum peak pressure (MPP) of the affected side on spatiotemporal gait parameters and gait symmetry of stroke patients Design: A cross-sectional study Methods: Eighteen stroke patients participated in this study. All subjects walked five trials using an air-pressure insole that provides auditory feedback with different thresholds set on the insole. First, subjects walked without any auditory feedback. Then, the MPP threshold on the affected side was set from 70% and increase threshold by 10% after each trial until 100%. They walked three times or more on the gait analyzer for each trial, and the average values were measured. Before starting the experiment, subjects measured body weight, initial gait abilities and affected side MPP without auditory feedback. Results: Temporal and spatial variables were significantly increased in trials with auditory feedback from air-pressure insole except for non-paralyzed single support time and spatial gait symmetry compared to trials without auditory feedback(p<0.05). Among the four different thresholds, the walking speed, unaffected side single support time, affected and unaffected side stride, and affected side step length were greatest at 80% threshold of maximum peak, while affected single support time, temporal gait symmetry, and unaffected step length were greatest at the maximum peak of 100% threshold. Conclusions: These results indicate that auditory feedback gait using air-pressure insoles can be an effective way to improve walking speed, single support time, step length, stride, and temporal gait symmetry in stroke patients.

Experimental investigation of Reynolds number effects on 2D rectangular prisms with various side ratios and rounded corners

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • 제21권2호
    • /
    • pp.183-202
    • /
    • 2015
  • Experiments on two-dimensional rectangular prisms with various side ratios (B/D=2, 3, and 4, where B is the along-wind dimension, and D is the across-wind dimension) and rounded corners (R/D=0%, 5%, 10%, and 15%, where R is the corner radius) are reported in this study. The tests were conducted in low-turbulence uniform flow to measure the wind pressures on the surfaces of 12 models for Reynolds numbers ranging from $1.1{\times}10^5$ to $6.8{\times}10^5$. The aerodynamic force coefficients were obtained by integrating the wind pressure coefficients around the model surface. Experimental results of wind pressure distributions, aerodynamic force coefficients, and Strouhal numbers are presented for the 12 models. The mechanisms of the Reynolds number effects are revealed by analyzing the variations of wind pressure distributions. The sensitivity of aerodynamic behavior to the Reynolds number increases with increasing side ratio or rounded corner ratio for rectangular prisms. In addition, the variations of the mean pressure distributions and the pressure correlations on the side surfaces of rectangular prisms with the rounded corner ratio are analyzed at $Re=3.4{\times}10^5$.

접촉성 손-위치 반응(Contactual Hand-Orientating Response)이 만성 뇌졸중환자의 일어서기 동작에 미치는 영향 (The Effects of Contact Hand-Orientation Response(CHOR) During Sit-to-stand(STS) in People with Stroke)

  • 서태화;양시은;이홍균
    • 신경치료
    • /
    • 제22권3호
    • /
    • pp.31-36
    • /
    • 2018
  • Purpose The purpose of this study was to investigate the effects of contact handorientation response(CHOR) during sit-to-stand(STS) in people with stroke. Methods The subjects of the study were Thirty hemiplegia participated (Rt. hemiplegia/Lt. hemiplegia: 15/15, mean age: $65.82{\pm}8.53$) in this study. The analysis of muscles activation (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius) distribution was conducted by the EMG, and the analysis of foot pressure distribution was conducted by the resistive pressure sensor. Hemiplegic stroke patients were instructed to perform STS three times with the non-affected side hand and affected side hand on the table. Results There was a significant positive correlation between rectus femoris, tibialis anterior muscle activation and affected side hand contact during STS(p<0.05). The STS correlated with the foot pressure in the affected side hand contact(p<0.05). Conclusion AS a result, CHOR during STS is related to muscle activation and the characteristics of foot pressure. This information was observed in the affected side hand contact on the table, suggestion that rehabilitation programs should be implemented.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

평상복 착용시 인체의 자세가 의복압에 미친 영향 (Effects of Body Postures on Garment Pressure in Daily Wear)

  • 김양원
    • 한국생활과학회지
    • /
    • 제13권1호
    • /
    • pp.153-158
    • /
    • 2004
  • With considerable development of comfortable and functional clothing in recent years, we need to evaluate the effects of garment pressure in daily wear on each parts of human body because the garment pressure is important to design the clothing. This study was designed to examine the effects of body postures on garment pressure on each parts of human body in the actual clothing conditions. All the data were collected from 50 volunteered subjects. The Garment pressure was measured in lune and December with 8 points CPMS clothing pressure system from scapular, upper am, elbow, under arm, front waist line, side waist line, abdomen, crista ilica, upper hip, middle hip, front thigh, back thigh, front knee and back knee. The postures of subjects were controlled with 3 positions such as standing (posture 1), sitting on the chair (posture 2), and sitting on the floor (posture 3) during measurement of clothing pressure. Clothing weights were more in men than in woman. It showed that clothing weights had no effects on the garment pressure. In this study, however, just the garment pressures on scapular and top of the hip increased significantly by clothing weight (p<. 05). Clothing horizontally pressed on scapular and top of hip but not on other parts. When subjects stood up, the garment pressure was the highest on the side waist. Especially, clothing pressure on the front waist point was lower than that of the left side waist. On the upper parts of the human body, the garment pressure of left side waist was the highest, and followed by front waist, crista ilica, and abdomen in order. When subjects were sitting on the chair, the garment pressure on the lower parts of the human body was the highest on the top of hip. When the subjects were sitting on the chair or on the floor, the surface area on their skin of hip and waist parts increased by postures. In addition, it showed that men felt more comfortable than women on higher clothing pressure level.

  • PDF

냉동기 펌프다운 운전성능에 관한 연구 (A Study on Pump Down Operation Performance of Refrigerator)

  • 김철수;정한식;정효민
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.964-970
    • /
    • 2006
  • Vapor compression refrigerators have much critical variables such as the controls of temperature and pressure switches, control durations and operating hours of electronic valves. This study compares and analyzes the data which is obtained from system controlling of the evaporation temperatures which are generally used in automatic pump down operating systems. Through this study, the automatic evaporation control operation system will be more ideal for the system to keep the proper temperature distribution depending on the purpose of evaporation side. The automatic pump down control operation is more appropriate for the system to aim at the effective use of evaporation side without using the temperature difference. And this test will be proved that the changes at the low pressure side didn't have significant impacts on the high pressure side.

라그랑즈 보간법과 신경망을 이용한 $CO_2$ 자동차에어컨시스템의 고압설정알고리즘 (The High-side Pressure Setpoint Algorithm of a $CO_2$ Automotive Air Conditioning System by using a Lagrange Interpolation Method and a Neural Network)

  • 한도영;노희전
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.29-33
    • /
    • 2007
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2$'s unique properties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. In this study, the high-side pressure setpoint algorithm was developed by using a neural network and a Lagrange interpolation method. These methods were compared. Simulation results showed that a Lagrange interpolation method was more effective than a neural network in the respect of its easiness of programming and shorter execution time.

  • PDF

현수시스템을 활용한 하수유방용 브래지어 설계 (Brassiere Design for Drooping Breasts Utilizing Suspensory System)

  • 손부현;민유숙;권수애
    • 한국의류학회지
    • /
    • 제39권4호
    • /
    • pp.560-575
    • /
    • 2015
  • This study developed brassieres using a suspension system with the elastic panel on the inside of the brassiere cup to replace the wires for 20s women with large and elongated breasts. The following results were obtained by analyzing clothing pressure and a subjective evaluation of brassieres with elastic panels at the bottom or side of the various reduction ratios and with the shoulder straps of the brassiere. Brassieres with dual panels (rather than with only the bottom panel) lowered clothing pressure as well as improved wearing comfort and function. Compared to brassieres with a panel of 10%, brassieres with a panel of 15% lowered clothing pressure and provided superior wearing comfort. In this case, the higher the reduction ratio of the side panels increased clothing pressure on the shoulder, but provided superior well-fit, bust-up, and vibration restraint. To reduce the reduction ratio of the side panel decreased clothing pressure on the shoulder and decreased support functions. Therefore, the reduction ratio of the side panels should be determined by preferable functions such as wearing comfort that depend on the needs of the wearer. It is suggested that a brassiere with a dual elastic panel can replace the brassiere wire.

평행류 열교환기 내부의 열유동 해석 (Heat and Flow Analysis Inside a Parallel-Flow Heat Exchanger)

  • 오석진;정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.781-788
    • /
    • 2003
  • In the present study, the heat and flow characteristics of a parallel-flow heat exchanger are numerically analyzed by using three-dimensional turbulent modeling. Heat transfer rate and pressure drop are evaluated using the concept of the efficiency index by varying the locations, the shapes and angles of inlet/outlet, and the protrusion height of flat tube. It is found that negative angle of the inlet improves the heat transfer rate and pressure drop. Results show that the locations of the inlet and outlet should be toward the right side and the left side to the reference model, respectively, in order to enhance the heat transfer rate and pressure drop. Increasing the height of the lower header causes pressure drop to decrease and yields the good flow characteristics. The lower protrusion height of flat tube shows the improvement of the heat transfer rate and pressure drop. The heat transfer rate is greatly affected by the parameters of outlet side such as the location and angle of the outlet. However, the pressure drop is influenced by the parameters of inlet side such as the location and angle of inlet and the height of the header.