• Title/Summary/Keyword: Side Impact Beam

Search Result 45, Processing Time 0.027 seconds

A primary study on the effect of artificial disturbance on a fishing area by shrimp beam trawl (새우조망에 의한 어업구역의 인위적인 영향에 대한 선행연구)

  • Cha, Bong-Jin;Yoon, Sang-Pil;Jung, Rae-Hong;Kim, Soung-gill;Lee, Jae-Soung;Yoon, Won-Duck;Shin, Jong-keun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.4
    • /
    • pp.223-233
    • /
    • 2009
  • It has been considered that fishing areas for shrimp beam trawl have been in ruin because Korean local governments have permitted trawling into the areas limited by the fisheries local regulations from 1994. Physical and biological effects of the trawling were investigated in the study. Physical effects were investigated by optical methods such as trawling tracking by side scan sonar and comparing the gear both before and after trawling. Biological aspects were investigated by grab sampling of benthic animals, concentration of trace metals in sediment and a flux evaluation of ${NH_4}^+,\;{PO_4}^-,\;and\;SiO_2$ by coring. The fishing activity had physical impacts on the seabed but these recovered naturally in less than fourty days naturally, which increased the benthic biodiversity, increases the trace metal concentration of and nutrient flux into the seawater, especially phosphate and silicate. This method and these results can help in further studies looking for disturbances by fishing.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용)

  • Nahm, Yoon-Eui;Inoue, Masato;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

Estimation of Icebreaking Forces and Failure Length of Ice Rubbles on Infinite Ice Sheet (무한 빙판에서의 쇄빙력과 파단 빙편의 크기 예측)

  • Choi, Kyung-Sik;Lee, Jin-Kyoung;Kim, Hyun-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Ice rubble pieces broken by the bow impact load and side hull of an icebreaking vessel usually pass along the ship's bottom hull and may hit the propeller/rudder or other stern structures causing serious damage to ship's hull . Therefore it is important to estimate the size of broken ice pieces during the icebreaking process. The dynamic interaction process of icebreaker with infinite ice sheet is simplified as a wedge type beam of finite length supported by elastic foundation. The wedge type ice beam is leaded with vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum dynamic bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a failure length of broken ice sheet given design parameters. The results are compared to Nevel(1961)'s analytical solution for static load and observed pattern of ice sheet failure onboard an icebreaker. Also by comparing computed failure length with the characteristic length, the meaning of ice rubble sizes is discussed.

Concha bullosa, nasal septal deviation, and their impacts on maxillary sinus volume among Emirati people: A cone-beam computed tomography study

  • Al-Rawi, Natheer H;Uthman, Asmaa T;Abdulhameed, Elaf;Al Nuaimi, Ahmed S;Seraj, Zahra
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • Purpose: To determine the prevalence of concha bullosa (CB) and nasal septal deviation (NSD) and their impact on maxillary sinus volume (MSV). Materials and Methods: Cone-beam computed tomographic (CBCT) images of 106 Emirati people were used in this study. The direction and angle of septal deviation were calculated. The presence of CB, which could be unilateral, contralateral, or bilateral in relation to the direction of NSD, was also recorded. MSV was measured using reconstructed Digital Imaging and Communication in Medicine images on Dolphin 3D imaging software version 11.8 premium (Dolphin Imaging, Chatsworth, CA, USA). P values<0.05 were considered to indicate statistical significance. Results: CB was detected in 37.7% of the sample; 20.7% of the sample showed single unilateral CB and 16.6% had single bilateral CB. NSD was seen in 74.5% of the sample. In the participants with CB, 45.5% showed mild deviation, 34.4% showed moderate deviation, and only 12.5% showed severe septal deviation. CB, but not NSD, was associated with significantly higher MSV on the affected side (P=0.001). Conclusion: Although NSD was observed in more than two-thirds of the sample and CB was present in more than one-third of the sample, only CB had a significant impact on MSV.

Real-time impact location monitoring using the stabilized Bragg grating sensor system (안정화된 광섬유 브래그 격자 센서 시스템을 이용한 실시간 충격위치검출에 관한 연구)

  • Bang, Hyung-Joon;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.37-42
    • /
    • 2004
  • In order to monitor the impact locations in smart structures, multipoint ultrasonic sensors are to be employed. In this study, a multiplexing demodulator with wide dynamic range was proposed to detect the impact locations using FBG sensors, and a stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. Two FBG sensors were attached on the bottom side of the aluminum beam specimen and low velocity impact tests were performed to detect the one-dimensional impact locations. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely, and found the impact locations with the average location error below 0.58mm.

Design Process of Light-weighted Fuel Cell Vehicle Body Frame (경량 연료전지 차체프레임 설계 프로세스)

  • Kim, Ki-Tae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • This paper presents a design process of light-weighted fuel cell vehicle (FCV) frame to meet design target of natural frequency in early design stage. At first, using validated FE model for the current design, thickness optimization was carried out. Next. optimization process, comprised of beam model size optimization, shell model design and shell model thickness optimization, was investigated for two frame types. In addition, in order to ensure hydrogen tanks safety against rear impact load, structural collapse characteristics was estimated for the rear frame model finally produced from the previous optimization process and, with the target of equal collapse characteristics to the current design model, structural modification with small weight increase was studied through static structural collapse analyses. The same attempt was applied to the front side frame. The results explain that the proposed process enables to design light-weighted frames with high structural performance in early stage.

A Study on the design of the Microstrip Patch Array Antenna for Doppler Radar (도플러 레이더용 마이크로스트립 페치 배열 안테나의 설계에 관한 연구)

  • 강중순;손병문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.519-526
    • /
    • 2002
  • In this paper, a microstrip patch array antenna for a Doppler radar at 10.525GHz is desinged and fabricated. To be used for mobile radar system, the antenna is fabricated on a single layer laminate to resist a fire impact and is covered with the Teflon foam. To obtain the desired characteristics, the array antenna is designed 4$\times$8 array using a corporate 3-dB amplitude taper. Also, using square patch elements, the antenna can be converted to a circular polarized antenna later. The designed and fabricated array antenna has the reflection coefficient$({S_11})$ -53.498dB, the horizontal beam width of $10^{\circ}$, the vertical beam width of $18.8^{\circ}$, the gain of 21dBi, the bandwidth of 220MHz for VSWR<1.5 and a side lobe level of less than -17.5dB.

The hidden X suture: a technical note on a novel suture technique for alveolar ridge preservation

  • Park, Jung-Chul;Koo, Ki-Tae;Lim, Hyun-Chang
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.6
    • /
    • pp.415-425
    • /
    • 2016
  • Purpose: The present study investigated the impact of 2 different suture techniques, the conventional crossed mattress suture (X suture) and the novel hidden X suture, for alveolar ridge preservation (ARP) with an open healing approach. Methods: This study was a prospective randomized controlled clinical trial. Fourteen patients requiring extraction of the maxillary or mandibular posterior teeth were enrolled and allocated into 2 groups. After extraction, demineralized bovine bone matrix mixed with 10% collagen (DBBM-C) was grafted and the socket was covered by porcine collagen membrane in a double-layer fashion. No attempt to obtain primary closure was made. The hidden X suture and conventional X suture techniques were performed in the test and control groups, respectively. Cone-beam computed tomographic (CBCT) images were taken immediately after the graft procedure and before implant surgery 4 months later. Additionally, the change in the mucogingival junction (MGJ) position was measured and was compared after extraction, after suturing, and 4 months after the operation. Results: All sites healed without any complications. Clinical evaluations showed that the MGJ line shifted to the lingual side immediately after the application of the X suture by $1.56{\pm}0.90mm$ in the control group, while the application of the hidden X suture rather pushed the MGJ line slightly to the buccal side by $0.25{\pm}0.66mm$. It was demonstrated that the amount of keratinized tissue (KT) preserved on the buccal side was significantly greater in the hidden X suture group 4 months after the procedure (P<0.05). Radiographic analysis showed that the hidden X suture had a significant effect in preserving horizontal width and minimizing vertical reduction in comparison to X suture (P<0.05). Conclusions: Our study provided clinical and radiographic verification of the efficacy of the hidden X suture in preserving the width of KT and the dimensions of the alveolar ridge after ARP.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

One-Sided Nondestructive Evaluation of CFRP Composites By Using Ultrasonic Sound (초음파를 이용한 CFRP 복합재의 일방향 비파괴 평가)

  • Im, Kwang-Hee;Zhang, Gui-Lin;Choi, Sung-Rok;Ye, Chang-Hee;Ryu, Je-Sung;Lim, Soo-Hwan;Han, Min-Gui;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • It is well known that stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences their properties. Ultrasonic NDE of composite laminates is often based on the backwall echoes of the sample. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Miniature potted angle beam transducers were used (Rayleigh waves in steel) on solid laminates of composites. Experiments were performed to understand the behavior of the transducers and the nature of the waves generated in the composite (mode, wave speed, angle of refraction). C-scan images of flaws and impact damage were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to fiber orientation of the CFRP composites, including low level porosity, ply waviness, and cracks. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with numerical results and one-side ultrasonic measurement might be very useful to detect the defects.