• Title/Summary/Keyword: Side Channel

Search Result 924, Processing Time 0.023 seconds

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Basic Experimental Study of the Edge-Flame Intensity Variation at High Temperature and with Small Fuel-Concentration Gradient (고온 미소농도구배 조건에서의 에지화염 강도 변화에 관한 실험적 기초 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.633-640
    • /
    • 2011
  • In this study, the stabilization of an edge flame and the intensity variation of a diffusion branch were investigated using a multi-slot combustor under conditions of high temperature and small fuel-concentration gradient (FCG). The combustor consists of three narrow channels: a quartz channel and two side-heating combustors. For the accuracy of this experimental study, quantitative analysis was carried out for each boundary condition. Stable edge flames could be observed under high-temperature conditions by controlling the FCG and fuel dilution ratio. Moreover, it was found that the intensity of the diffusion flame was increased by increasing the temperature of the mixture. On the contrary, the intensity of the diffusion flame was decreased by increasing the dilution ratio. It was also found that a propane flame is more sensitively affected by these experimental parameters than a methane flame.

Subspace-based Power Analysis on the Random Scalar Countermeasure (랜덤 스칼라 대응기법에 대한 부분 공간 기반 전력 분석)

  • Kim, Hee-Seok;Han, Dong-Guk;Hong, Seok-Hie;Yi, Ok-Yeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.139-149
    • /
    • 2010
  • Random scalar countermeasures, which carry out the scalar multiplication by the ephemeral secret key, against the differential power analysis of ECIES and ECDH have been known to be secure against various power analyses. However, if an attacker can find this ephemeral key from the one power signal, these countermeasures can be analyzed. In this paper, we propose a new power attack method which can do this analysis. Proposed attack method can be accomplished while an attacker compares the elliptic curve doubling operations and we use the principle component analysis in order to ease this comparison. When we have actually carried out the proposed power analysis, we can perfectly eliminate the error of existing function for the comparison and find a private key from this elimination of the error.

New Power Analysis Attack on The Masking Type Conversion Algorithm (마스킹 형태 변환 알고리즘에 대한 새로운 전력 분석 공격)

  • Cho, Young-In;Kim, Hee-Seok;Han, Dong-Guk;Hong, Seok-Hie;Kang, Ju-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.159-168
    • /
    • 2010
  • In the recent years, power analysis attacks were widely investigated, and so various countermeasures have been proposed. In the case of block ciphers, masking methods that blind the intermediate results in the algorithm computations(encryption, decryption, and key-schedule) are well-known. The type conversion of masking is unavoidable since Boolean operation and Arithmetic operation are performed together in block cipher. Messerges proposed a masking type conversion algorithm resistant general power analysis attack and then it's vulnerability was reported. We present that some of exiting attacks have some practical problems and propose a new power analysis attack on Messerges's algorithm. After we propose the strengthen DPA and CPA attack on the masking type conversion algorithm, we show that our proposed attack is a practical threat as the simulation results.

Secure classical RSA Cryptosystem against Fault Injection Attack based on Fermat's Theorem (페르마정리에 기반하는 오류 주입 공격에 안전한 classical RSA 암호시스템)

  • Seo, Gae Won;Baek, Yoo Jin;Kim, Sung Kyoung;Kim, Tae Won;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.859-865
    • /
    • 2013
  • Esmbedded devices such as smart cards and electronic passports highly demand security of sensitive data. So, the secure implementation of the cryptographic system against various side-channel attacks are becoming more important. In particular, the fault injection attack is one of the threats to the cryptosystem and can destroy the whole system only with single pair of the plain and cipher texts. Therefore, the implementors must consider seriously the attack. Several techniques for preventing fault injection attacks were introduced to a variety of the cryptosystem, But the countermeasures are still inefficient to be applied to the classical RSA cryptosystem. This paper introduces an efficient countermeasure against the fault injection attack for the classical RSA cryptosystem, which is based on the famous Fermat's theorem. The proposed countermeasure has the advantage that it has less computational overhead, compared with the previous countermeasures.

A NUMERICAL STUDY ON THE FLOW AND HEAT TRANSFER CHARACTERISTICS OF A HEAT EXCHANGER HAVING RECTANGULAR PIN-FINS SLANTED IN THE FLOW DIRECTION (유동 방향으로 기울어진 사각 핀-휜 열교환기의 유동 및 열전달 특성에 대한 수치적 연구)

  • Seo, J.H.;Kim, M.;Ha, M.Y.;Min, J.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.98-109
    • /
    • 2016
  • The flow and heat transfer characteristics of a heat exchanger having rectangular pin-fin in the flow direction have been investigated numerically. On the bottom plate, the convective boundary conditions for the hot side was given, and the fins were arranged in a channel-type geometric model using the periodic boundary condition in the span-wise direction. Three-dimensional numerical calculations for the flow and conjugate heat transfer problem were conducted using SIMPLE algorithm and $k-{\varepsilon}$ turbulence model. For the slanted pin-fin models, it was found that the downward cooling flow is generated due to the downward pressure gradient component, which can enhance the heat transfer performance near the bottom surface and the fin stem region. Four different inclined angles were considered in the Reynolds number range of 13,500-55,000. The aero-thermal performance of the slanted pin-fin heat exchangers, such as the volume and area goodness factors, were summarized and compared with the baseline plate-fin type heat exchanger quantitatively.

Skin Color Based Hand and Finger Detection for Gesture Recognition in CCTV Surveillance (CCTV 관제에서 동작 인식을 위한 색상 기반 손과 손가락 탐지)

  • Kang, Sung-Kwan;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we proposed the skin color based hand and finger detection technology for the gesture recognition in CCTV surveillance. The aim of this paper is to present the methodology for hand detection and propose the finger detection method. The detected hand and finger can be used to implement the non-contact mouse. This technology can be used to control the home devices such as home-theater and television. Skin color is used to segment the hand region from background and contour is extracted from the segmented hand. Analysis of contour gives us the location of finger tip in the hand. After detecting the location of the fingertip, this system tracks the fingertip by using only R channel alone, and in recognition of hand motions to apply differential image, such as the removal of useless image shows a robust side. We explain about experiment which relates in fingertip tracking and finger gestures recognition, and experiment result shows the accuracy above 96%.

Compact Implementation of Multiplication on ARM Cortex-M3 Processors (ARM Cortex-M3 상에서 곱셈 연산 최적화 구현)

  • Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1257-1263
    • /
    • 2018
  • Secure authentication technology is a fundamental building block for secure services for Internet of Things devices. Particularly, the multiplication operation is a core operation of public key cryptography, such as RSA, ECC, and SIDH. However, modern low-power processor, namely ARM Cortex-M3 processor, is not secure enough for practical usages, since it executes the multiplication operation in variable-time depending on the input length. When the execution is performed in variable-time, the attacker can extract the password from the measured timing. In order to resolve this issue, recent work presented constant-time solution for multiplication operation. However, the implementation still missed various speed-optimization techniques. In this paper, we analyze previous multiplication methods over ARM Cortex-M3 and provide optimized implementations to accelerate the speed-performance further. The proposed method successfully accelerates the execution-time by up-to 25.7% than previous works.

Proposal and Implementation of 2-D OCDMA System with Reconfigurable Array Encoder/Decoder and Double Hard Limiters (배열형 가변 부호기/복호기와 이중 하드 리미터를 적용한 2-D OCDMA시스템 제안 및 구현)

  • 김진석;김범주;권순영;박종대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.705-711
    • /
    • 2004
  • We propose novel OCDMA system with the structure of reconfigurable may encoder/decoder(RAE/ RAD), which are able to reallocate the 2-D optical codes to each subscriber and recover the transmitted data at all the receiving nodes. We have first implemented the double hard limiters composed of limiting amplifier(first hard limiter) that maintain a level of the encoded data from receiving node and AND detector(second hard limiter) for detecting the position of the encoded data and recovering the data. With the proposed system, it was successfully implemented to recover a specific channel data out of 16 code-multiplxed channels using FPGA and 4 DFB-LDs having distinct wavelengths. From experimental results, the code length resulted from increasing the number of the simultaneously connected channels has been reduced by using 2-D OCDMA multiplexed in time and wavelength instead of 1-D OCDMA. In addition, bit errors phenomenon on account of deterioration of autocorrelation peak-to-side lobe ratio is enhanced by using the double hard limiters composed of AND detector and limiting amplifiers.

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.