• 제목/요약/키워드: Sick Building Syndrome

검색결과 99건 처리시간 0.025초

실내 공기질 개선을 위해 피톤치드를 혼입한 시멘트 경화체 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Cement Matrix for Improving Indoor Air Quality by Phytoncide)

  • 김현성;정용훈;박선규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.64-65
    • /
    • 2019
  • Formaldehyde has been classified as a first-class carcinogen by international cancer research organizations. Formaldehyde causes various diseases such as sick house syndrome, building syndrome, chemical sensitivity etc. Formaldehyde is diffused from building materials and furniture. It has been published that research of phytoncide can reduce formaldehyde. In this study, we used phytoncide with cement matrix to reduce formaldehyde. As a result, the cement matrix strengths was increased slightly and formaldehyde has been reduced over time.

  • PDF

아파트 실내공기질 현장측정에 의한 전열교환 청정환기유니트 성능평가 (IAQ Field Survey in an Apartment Housing Equiped for Heat Recovery Ventilation System with Air Cleaning Function)

  • 이정재;이중훈;이승민
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.688-693
    • /
    • 2005
  • Nowaday the natural ventilation rate decreases because the apartment housing is being air-tight. Therefore, Indoor Air Quality (IAQ) and indoor environment grow worse. Especially, Formaldehyde (HCHO), Volatile Organic Compounds (VOCs) which is emitted from the building materials and coating material etc. occur Sick House Syndrome that cause negative impact on resident's respiratory system and body. Therefore in construction field, it will be a important issues that development of a ventilation system with high effectiveness which can exhaust the contaminant out of the building quickly. In this research we evaluated 'wall attachable duct-less Heat Recovery Ventilation (HRV) system with air cleaning function'. We executed a synthetic evaluation about indoor air environment under various operating condition installing the system in real scale apartment house that is built in Anyang city. HRV system with air cleaning function showed good performance by removing HCHO, VOCs with less ventilation energy.

Elevated Levels of PDGF Receptor and MDM2 as Potential Biomarkers for Formaldehyde Intoxication

  • Lee, Min-Ho;Lee, Byung-Hoon;Shin, Ho-Sang;Lee, Mi-Ock
    • Toxicological Research
    • /
    • 제24권1호
    • /
    • pp.45-49
    • /
    • 2008
  • Formaldehyde has been identified as the most prevalent cause of sick building syndrome (SBS), which has become a major social problem, especially in developing urban areas. However, studies on the molecular mechanisms associated with formaldehyde toxicity have been limited, probably because it is difficult to relate the experimental results obtained from in vitro studies to human exposure in vivo. Using polymerase chain reaction-based suppression subtractive hybridization, we recently identified 27 different formaldehyde-inducible genes including platelet-derived growth factor receptor alpha gene (PDGFRA) and mouse double minute 2 (MDM2) gene which were increased significantly in both formaldehyde-exposed human trachea cells, 680.Tr, and rat tracheas. To establish a possible relationship between induction of these formaldehyde-inducible genes and symptoms of SBS, we examined expression levels of these genes in peripheral lymphocytes of residents of new apartments. Here, we report that the expression of PDGFRA and MDM2 transcripts was significantly higher in peripheral blood lymphocytes obtained from 15 residents in new buildings than in seven control individuals. Our results suggest that the elevated levels of PDGFRA and MDM2 may be associated with the formaldehyde-induced pathophysiology that is closely related with SBS, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication.

대형챔버에 의한 생활제품(가구류) 방출오염물질 특성연구 (A study on the chemical emission of furnitures using the large chamber method)

  • 박재형;강윤경;이윤규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.742-747
    • /
    • 2008
  • Formaldehyde(HCHO) and total volatile organic compounds(VOCs) can cause adverse health effects to the building occupants and may contribute to symptoms of 'Sick Building Syndrome'. These chemical contaminants are emitted from furnishings and electronic equipments as well as building materials. The purpose of this study is to measure and analyze VOCs and HCHO emission concentration from furnitures composed of wood materials including various chemicals by the large chamber method. This paper presents experiment results on the emission concentration of TVOCs and HCHO released from furnitures, such as bed, kitchen, sofa and table by a large chamber($24m^3$). The temperature and air humidity in the chamber are controlled to $25{\pm}1{\circ}C$ and $50{\pm}5%$ for this experiment. When the air change rate is $0.5hr^{-1}$, the background concentrations within the large chamber are below $50{\mu}g/m^3$ for TVOC, $5{\mu}g/m^3$ for HCHO and individual VOCs. The study is investigated the characterization of the chemical emission TVOC and HCHO concentrations and unknown VOCs from 6 furnitures.

  • PDF

동적 단열재의 열성능 측정에 관한 연구 (A Measurement Study of a Dynamic Insulator Thermal Performance)

  • 고선미;강은철;이의준
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

신축아파트의 실내거주환경개선에 관한 연구 (A Study on the Increasement of the Indoor Amenity on the New Apartment)

  • 강현수;김성웅;조영준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.163-166
    • /
    • 2005
  • Amenity is an essential factor of Modern Apartment. But because of many chemical products and noxious volatile organic compound(VOC) used in the apartment, many people are exposed to them. This fact implies that there can be many disease caused by them. Therefore to reduce pollutant matters inducing sick house syndrom, measures for new furniture and apartment dweller were suggested in this study.

  • PDF

건축물 실내 공기질 향상을 위한 광촉매 코팅 효과에 관한 연구 (A Study on the Effect of Photocatalyst Coating to Improve the Indoor Air Quality in Buildings)

  • 박현구;김종호;고성석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.150-157
    • /
    • 2006
  • 새건물증후군이란 새로 지은 건물에서 생활하는 사람들에게 눈이 따갑거나 목이나 코가 아프거나, 두통, 구토, 피부발진 등 증상이 나타나는 것을 일컫는 말이다. 새집증후군 원인물질의 주요 성분으로는 건축 자재나 벽지, 페인트, 가구 접착제 등에서 발생되는 포름알데이드(HCHO)와 톨루엔 등 휘발성 유기화합물(VOCs: Volatile Oragnic Compounds), 부유 박테리아, 곰팡이, 바이러스 등이다. 새집증후군을 저감하기 위한 방법으로는 환기에 의한 방법, 오염물질이 없는 친환경 재료의 사용 및 재료의 처리를 통해 오염물질을 저감하고자 제거하는 방법이 있다. 본 연구는 이들 방법 중 건축 재료 위에 표면코팅처리를 함으로써 실내 공기질을 향상시키기 위한 것으로, 건물 내 표면 코팅 전후의 공기질을 분석함으로써 실내 거주환경을 안전하게 조성하는 데 그 목적이 있다.

미세 다공질 광물과 아미드계 분해제의 적용을 통한 건축자재의 습도 조절과 폼알데히드 분해 성능 특성 평가 (Micro Porous Clay Mineral Absorption / Desorption Moisture-Proof Performance of The Atmospheric Humidity and Decomposing The Polyamide Adsorption Performance Characterization of Formaldehyde)

  • 이제철;김윤환;윤승희
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.105-109
    • /
    • 2014
  • The recent rising living standards, environment-friendly, well-being and health aspects of life in the basic gratification, as well as the desire for a pleasant environment emotionally environmentally friendly way of external space or industrial interest in the indoor environment, the manifestation. In particular, the biggest problem of the indoor environment has been emerged as a Sick House Syndrome indoor space that is provided to the building materials, and the impact on the domestic and the indoor environment, and clean the house in a health standards are specified as laws. The performance rating and the various materials to create environmentally-friendly standards for building materials. The more detail, Porous clay material, toxic substances released by applying the high humidity and the water itself, and to absorb the moisture, if the emissions, without a separate device, to maintain a comfortable indoor environment and at the same time, one of the causes of Sick House Syndrome breaking down harmful substances to absorb a comfortable indoor environment to maintain an environmentally-friendly building interior material studies. It is aimed at the development to multi-functional high performance eco-friendly construction materials, rather than through one feature performance, identify key features for national and international eco-friendly building materials can exert Water Vapour Adsorption raw, decomposed materials for the application and selection.

키토산 겔을 이용한 포름알데하이드 차폐 시트 개발 (Development of Formaldehyde-shielding Chitosan-gel Sheet)

  • 김소연;김미소;탁상민;이지환;심소연;주은희;김성배;김창준
    • KSBB Journal
    • /
    • 제29권3호
    • /
    • pp.183-187
    • /
    • 2014
  • Sick-building syndrome occurs when indoor air is polluted with harmful volatile organic compounds such as formaldehyde which are contained in furniture or new building materials. In this study, formaldehyde-shielding chitosangel sheet was developed and its performance was evaluated. Chitosan and agar were dissolved in acetic acid solution. The optimal concentrations of chitosan, acetic acid and agar were 3, 3, and 2.5 %(w/w). Formaldehyde was spreaded on gypsum board and then wall paper was attached on it by using glue. When chitosan-gel sheet was attached on this control board, the amount of formaldehyde released from the board was decreased by 63% than in control board. On the other hand, decrease in formaldehyde releasing was only 32% when liquid solution of chitosan was spreaded on the control board. This result clearly indicates that chitosan-gel sheet removes formaldehyde more effectively than liqud solution of chitosan. Furthermore, this type of sheet is more applicable to new building than spraying type.