• Title/Summary/Keyword: SiOx thin film

Search Result 42, Processing Time 0.019 seconds

Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD (Mist-CVD법으로 증착된 다결정 산화갈륨 박막의 MOSFET 소자 특성 연구)

  • Seo, Dong-Hyun;Kim, Yong-Hyeon;Shin, Yun-Ji;Lee, Myung-Hyun;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.427-431
    • /
    • 2020
  • In this research, we evaluated the electrical properties of polycrystalline-gallium-oxIde (Ga2O3) thin films grown by mist-CVD. A 500~800 nm-thick Ga2O3 film was used as a channel in a fabricated bottom-gate MOSFET device. The phase stability of the β-phase Ga2O3 layer was enhanced by an annealing treatment. A Ti/Al metal stack served as source and drain electrodes. Maximum drain current (ID) exceeded 1 mA at a drain voltage (VD) of 20 V. Electron mobility of the β-Ga2O3 channel was determined from maximum transconductance (gm), as approximately, 1.39 ㎠/Vs. Reasonable device characteristics were demonstrated, from measurement of drain current-gate voltage, for mist-CVD-grown Ga2O3 thin films.

INVESTIGATIONS OF OXIDATIONS OF SnOx AND ITS CHANGES OF THE PROPERTIES PREPARED BDEPOSITIONY REACTIVE ION-ASSISTED

  • Cho, J.S.;Choi, W.K.;Kim, Y.T.;Jung, H.J.;Koh, S.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.766-772
    • /
    • 1996
  • Undoped $SnO_x$ thin films were deposited on Si(100) substrate by using reactive ioassisted deposition technique (R-IAD). In order to investigate the effect of initial oxygen content and heat treatment on the oxidation state and crystalline structure of tin oxide films, $SnO_x$ thin films were post-annealed at 400~$600^{\circ}C$ for 1 hr. in a vacuum ~$5 \times 10^{-3}$ -3/ Torr or were directly deposited on the substrate of $400^{\circ}C$ and the relative arrival ration ($Gamma$) of oxygen ion to Sn metal varied from 0.025 to 0.1, i.e., average impinging energy ($E_a$) form 25 to 100 eV/atom. As $E_a$ increased, the composition ratio of $N_ON{sn}$ changed from 1.25 to 1.93 in post-annealing, treatment and 1.21 to 1.87 in in-situ substrate heating. In case of post-annealing, the oxidation from SnO to $SnO_2$ was closely related to initial oxygen contents and post-annealing temperature, and the perfect oxidation of $SnO_2$ in the film was obtained at higher than $E_a$=75 eV/atom and $600^{\circ}C$. The temperature for perfect oxidation of $SnO_2$ was reduced as low as $400^{\circ}C$ through in-situ substrate heating. The variation of the chemical state of $SnO_x$ thin films with changing $E_a$'s and heating method were also observed by Auger electron spectroscopy.

  • PDF