• Title/Summary/Keyword: SiFe Sheet

Search Result 78, Processing Time 0.023 seconds

Electromagnetic Wave Absorbing Properties of FeSiCr and Fe50Ni Flaky Powder-Polymer Composite Sheet (FeSiCr에 Fe50Ni가 첨가된 폴리머 복합 시트의 전자파 흡수 특성)

  • Lee, Seok-Moon;Kim, Sang-Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.462-467
    • /
    • 2014
  • In this paper, we studied the magnetic composite sheets for electromagnetic wave noise absorber of quasi-microwave band by using soft magnetic FeSiCr and Fe50Ni flakes with the thickness of about $1{\mu}m$ and polymer. The magnetic hysteresis curve including saturation magnetization and residual magnetization and the complex permeability characteristics of the composite sheets were investigated to clarify the mixing effect on electromagnetic wave absorption properties. The saturation magnetization was decreased about 10% while the residual magnetization was increased about 15% and the real parts of complex permeability at below 500 MHz were increased 0.6~4 while those values at above 500 MHz were decreased 0.4~2.5 according to the change of contents of FeSiCr and Fe50Ni powders. As a result, the reflection loss can be moved to the lower frequency from 2~3 GHz to 1~1.5 GHz as the contents of Fe50Ni flaky powder into FeSiCr flaky powder was increased up to 50%.

Characteristics of Fe-6.5wt%Si Core Material by Chemical Vapor Deposition Method (화학기상증착에 의한 Fe-6.5wt%Si철심재료의 특성평가)

  • Yun, Jae-Sik;Kim, Byeong-Il;Park, Hyeong-Ho;Bae, In-Seong;Lee, Sang-Baek
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.512-518
    • /
    • 2001
  • It has been well known that 6.5wt% Si steel sheets have excellent magnetic properties such as low core loss. high maximum permeability and low magnetostriction. In this work, we studied a method for producing 6.5wt% Si steel sheets using a chemical vapor deposition (CVD) method. The following is the procedure adopted in this work to produce 6.5wt% Si steel sheets; SiCl$_4$ gas is applied onto a low content-Si steel sheet placed in a tube furnace. Silicon atoms resulted from the decomposition of SiCl$_4$ are permeated through the surface of the steel sheet. Finally, by the diffusion process maintaining it under a high temperature the silicon atoms diffuse uniformly into the sheet. Through this process, 6.5wt% Si steel sheets can be obtained. The manufactured Fe-6.5wt% Si steel sheet with a thickness of 0.5mm exhibited a high frequency core loss (W$_{2}$1k/) of 8.92 W/kg. Its permeability increased from 37,100 to 53,300 at 1 tesular(T). The mechanical properties of the manufactured steel sheets were also estimated and the result showed that the workability was significantly improved by annealing in vacuum at 773k. Increased plastic deformation was also observed prior to fracture and the amount of grain boundary rupture was reduced.

  • PDF

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Effect of the Tertiary Recrystallization on the Magnetic Properties of High Silicon Iron (고규소철 강판의 자기적 특성에 미치는 3차 재결정의 영향)

  • Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.246-254
    • /
    • 1997
  • The 6.5wt %Si-Fe alloy sheets were made by the twin roll process. The magnetic properties and microstructures of sheets annealed in the sulfur atmosphere were studied. In the as-prepared sheet, non-oriented columnar grains about $10{\mu}m$ in diameter were observed, which grew from the surface to the inner part of the sheet. When the annealing temperature was around $700^{\circ}C$, the primary recrystallization was formed around the middle part of the sheet thickness, and the grain size increased with increasing annealing temperature. At the annealing temperature of $900^{\circ}C$, the grain size became $30{\sim}40{\mu}m$. Around the annealing temperature, the motive force of the grain growth is the grain boundary energy. However, above $1000^{\circ}C$ the surface energy played an important role in the observed grain growth. When the sheet were annealed at $1200^{\circ}C$, the grains whose (100) planes were paralled to the thin plate surface grew, and all sheet surfaces were covered with these grains after 1 hour annealing. This phenomenon is called tertiary recrystallization. A difference in surface energy between (100) and (110) surfaces provides a driving force for growth of tertiary grains. The coercive force was 0.27 mOe and the AC core loss $W_{12/50}$ was 0.38w/kg for the 6.5wt%Si-Fe alloy.

  • PDF

Effect of Alloying Elements on the Microstructure and Texture of the Secondary Ingots made by Al Used Beverage Cans (알루미늄 폐캔을 이용한 2차지금의 미세조직 및 집합조직에 미치는 합금원소의 영향)

  • 박차용;고흥석;강석봉
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.46-52
    • /
    • 2000
  • Aluminum can to can recycling was divided into two stpes. The first step was composed of the processes such as collection of used beverage cans (UBC), shredding, magnetic separation, De-laquiring, melting and casting. The second one was remelting and casting, heat treating, hot and cold rolling, annealing, and can making. In this study, the effect of alloying elements on the microstructure and texture of the secondary ingots made by Al UBC was investigated. In aluminum can to can recycling, the second phase particles appeared in the solidification stage must be controlled by heat treatment. The optimum heat treatment condition was $615^{\circ}C$ for 5hrs. the texture in hot rolled sheet was depressed with increasing Mn content, on the other hand, Si and Fe elements promoted the texture development. The textures of can-body sheet should be controlled in the hot rolling and annealing stage because can was formed from cold rolled sheet without heat treatment.

  • PDF

Characteristics of Electromagnetic Wave Absorber Sheet for 2.4 GHz Wireless Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder (Fe-계 연자성 금속분말을 이용한 2.4 GHz 대역 무선통신용 전파 흡수체의 특성 평가)

  • Kim, ByeongCheol;Seo, ManCheol;Yun, Yeochun
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.532-541
    • /
    • 2019
  • Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In high-density electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.

Effect of Annealing on the Mechanical properties of Fe-6.5wt% Si Alloy (Fe-6.5wt% Si 합금의 역학 특성에 미치는 어닐링 효과)

  • Yun, Yeong-Gi;Yun, Hui-Seok;Hong, Seong-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2909-2916
    • /
    • 2000
  • 6.5wt% Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. The AX magnetic properties as magnetostriction of 6.5% Si steel were evaluated and compared with those of conventional 3% Si steel sheet. In this paper, the fracture behavior of the poly crystals and single crystals of Fe-6.5wt%Si alloy has been observed. Single crystals were prepared by Floating Zone(FZ) method, which melts the alloy by the use of high temperature electron beam in pure argon gas condition. And the single crystals were annealed at 500$^{\circ}C$ and 700$^{\circ}C$ respectively and tensile tested at room temperature. According to the result, B2 phase has more good elongation than DO$_3$ phase. It was also found that the fracture surfaces of the single crystals have hairline facets in same direction, and the facets change the direction according to the single crystal phase.

Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

Study on the Surface Magnetic Domain Structure of Thin-Gauged 3% Si-Fe Strips using Scanning Electron Microscopy with Polarization Analysis

  • Chai, K.H.;Heo, N.-H.;Na, J.g.;Lee, S.R.;Woo, j.s.
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.44-48
    • /
    • 1998
  • Scanning Electron Microscopy with Polarization Analysis (SEMPA) was used to image the surface magnetic domain structure of the 100 ${\mu}{\textrm}{m}$ thick 3% Si-Fe sheet. The thin-gauged 3% Si-Fe strips with magnetic induction ($B_{10}$) from 1.98 to 1.57 Tesla were prepared via conventional metallurgical processes including melting, hot-and cold-rolling, intermediate annealing and final annealing. Using SEMPA, it was observed that the $B_{10}$ (1.98 T) Tesla sample was almost composed of 180$^{\circ}$ stripe domains which are parallel to rolling direction. On the other hand the 3% Si-Fe sheet with $B_{10}$ (1.57 T) Tesla was composed of large 180$^{\circ}$stripe domains that are slanted about 30$^{\circ}$to the rolling direction and complex magnetic domain structures like tree and zigzag pattern. The 180$^{\circ}$stripe domains, which covered a major part of the sample, had (110)<001> Goss texture parallel to the rolling direction. The domain walls between 180$^{\circ}$stripe domains were the conventional Bloch type walls. On the other hand, the 90$^{\circ}$domains, which covered minor part on edge of the sample, were observed in (200) grains. The domain walls between 90$^{\circ}$domains were the Neel type walls. In high magnification, the elliptical singularity at the Neel walls was clearly observed.

  • PDF