• Title/Summary/Keyword: SiFe Sheet

Search Result 78, Processing Time 0.021 seconds

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet (Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술)

  • Hong, Won Sik;Kim, Sang Hyun;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

A Study on Shield Effect of Shield Case using SiFe Sheet (규소강판을 이용한 실드케이스의 차폐효과)

  • Shin, Dong-Gyu;Kim, Young-Hak
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • The shield effect of 4 layered shield case was investigated in this paper. The material of the case was non-oriented SiFe sheet with a thickness of 0.5mm. The size of the case was 100mm wide, 100mm high and 300mm long. Relative permeability of SiFe sheet was needed to calculate shield effect. It was obtained from the measurement by a ferrite yoke and from the calculation by eddy current FEM analysis. Three configurations were used to connect both ends of SiFe sheet. First one is a connection by double-welded butt. Second one is to put the sheet the same material above the confronted both ends of the sheet to avoid a leakage magnetic flux. The last one is ideally without any connection. The shield effect of the second one agreed well with the last one and showed the shield effect of -40dB.

Rapidly Solidified Fe-6.5wt% Si Alloy Powders for High Frequency Use

  • Park, Seung-Dueg;Yang, Choong-Jin
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.12-15
    • /
    • 1997
  • Fe-(3∼6.5wt%) Si alloy powders having a high magnetic induction(Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5wt% Si powders exhibited the high frequency magnetic properties : megnetic induction(B8) of 1.23 T, coercivity(Hc) of 0.12 Oe, relative permeability(${\mu}$a) of 6321, and core loss(W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The magnetic induction values were found to be almost identical to those of non-oriented Fe-6.5wt% Si steel sheet and double the value of 6.5wt% Si sheet prepared by the CVD technique. The high frequency core losses(W) up to 10 kHz(W10/10k) were measured to be competitive to those of grain-oriented Fe-6.5wt% Si steel sheet.

  • PDF

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Effects of Sheet Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr/Polymer Composite Sheets (FeSiCr/폴리머 복합 시트의 전자파 흡수 특성에 미치는 시트 두께의 영향)

  • Noh, Tae-Hwan;Kim, Ju-Beom
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2010
  • This study examined the effects of sheet thickness on electromagnetic wave absorption characteristics and internal microstructure in 92.6%Fe-6.5%Si-0.9%Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band. The composite sheets with the thickness of 0.3, 0.4 and 0.5 mm were prepared by tape casting. A significant decrease in transmission parameter $S_{21}$ and a large increase in power loss were observed for the thick composite sheet in the frequency range of 1~5 GHz. However the permeability properties were not affected by thickness variation, while the imaginary part of complex permittivity increased with the increase of sheet thickness at 1~5 GHz. The enhanced electromagnetic wave absorption characteristics in the thicker composite sheets was attributed to the changed microstructure and the higher dielectric loss.

Study of the Effects of Fe94Si5Cr1-Rubber Absorbers with Sheet-Thickness (Fe94Si5Cr1을 이용한 Sheet 두께에 따른 전파흡수특성 연구)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.62-66
    • /
    • 2009
  • The soft magnetic FeSiCr were processed the ball-mill for 30 hours and the shape of FeSiCr particles was changed from sphere to flake type, which was observed using scanning electron microscope. The complex permittivity and permeability spectra and reflection loss of FeSiCr-rubber composite was measured using Network Analyzer in order to investigate the relationship between the microwave absorption and the material constants. The matching frequency shifted toward lower frequency range with microwave absorber thickness, and microwave absorber with FeSiCr-rubber composite showed a maxium reflection loss of -8.3 dB at 1.86 GHz for a 1.3 mm thickness.

The development and the magnetic properties of sheet hexaferrite magnets (Hexaferrite 쉬트자석의 개발과 자기적 성질에 관한 연구)

  • 김철성;박승일;오영제
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.281-286
    • /
    • 1995
  • In order to study the effect of additives $SiO_{2}$ on the magnetic properties of hexaferrite sheet magnet, we used X-ray diffractometer, Mossbauer spectrometer, and VSM magnetometer. We have prepared $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ green sheets by the Dr. Blade method. Most of samples have a magnetoplurnbite crystal structure of typical M-type hexaferrite. The lattice parameters are found not to be affected by the addition of $SiO_{2}$. ${\alpha}-Fe_{2}O_{3}$ phase develops above $SiO_{2}$ 2.0 wt.%. Isomer shifts indicate that the valence of Fe ions is trivalent. Curie temperatures decrease slightly with increasing $SiO_{2}$ concentrations. It means that the $Si^{4+}$ subsitution for 12k-site $Fe^{3+}$ has an effect on the superexchange interactions Fe-O-Fe, which change the distance and the angle between cations and anions. It was suggested that ${\alpha}-Fe_{2}O_{3}$ phase results from the excessive Fe produced by subsituting $Si^{4+}$ for $Fe^{3+}$. Based upon the results of $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ added with $SiO_{2}$, we concluded that $H_{c}$, $M_{s}$ and $M_{r}$ depend more strongly on the microstructure chracteristics than on the cation substitution.

  • PDF

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.

Co-deposition of Si Particles During Electrodeposition of Fe in Sulfate Solution (황산철 도금액 중 Si 입자의 공석 특성)

  • Moon Sung-Mo;Lee Sang-Yeal;Lee Kyu-Hwan;Chang Do-Yon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.319-325
    • /
    • 2004
  • Fe thin films containing Si particles were prepared on metallic substrates by electrodeposition method in sulfate solutions and the content of codeposited Si particles in the films was investigated as a function of applied current density, the content of Si particels in the solution, solution pH, solution temperature and concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film was not dependent on the applied current density, solution pH and solution temperature, while it was dependent on the content of Si particles in the solution and the concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film increased with increasing content of Si particles in the solution but reached a maximum value of about 6 wt% when the content of Si particles in the solution exceeds 100 g/l. On the other hand, the content of Si codeposited in the film increased up to about 17 wt% with decreasing concentration of $FeSO_4$$7H_2$O in the solution. These results would be applied to the fabrication of very thin Fe-6.5 wt% Si sheets for electrical applications.

Magnetic Properties of Amorphous FeSiB and Nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Soft Magnetic Sheets

  • Cho, H.J.;Cho, E.K.;Song, Y.S.;Kwon, S.K.;Sohn, K.Y.;Park, W.W.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.786-787
    • /
    • 2006
  • The magnetic inductance of nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy was about $88{\mu}H$ at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.

  • PDF